Draft ETSI EN 301 908-25 V15.0.0 (2024-07)

IMT cellular networks; Harmonised Standard for access to radio spectrum; Part 25: New Radio (NR) User Equipment (UE) Release 15

Reference DEN/MSG-TFES-15-25

Keywords

3GPP, 5G, cellular, IMT, IMT-2000, IMT-Advanced, mobile, NR, radio, regulation

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from: https://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our Coordinated Vulnerability Disclosure Program:

https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of experience to understand and interpret its content in accordance with generally accepted engineering or other professional standard and applicable regulations.

No recommendation as to products and services or vendors is made or should be implied. In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2024. All rights reserved.

Contents

Intellect	ual Property Rights	9
Forewor	rd	9
Modal v	verbs terminology	10
Introduc	ction	10
1 Se	cone	11
Foreword. Modal verbs terminology Introduction		
2 R	eferences	16
3 D	efinition of terms, symbols and abbreviations	20
Modal verbs terminology		
4 T	echnical requirements specifications	26
	15	
	•	
	•	
	•	
	•	
	, e	
	j e	
4.1.2.6.2 4.1.2.6.3		
+.1.2.0.3	v 01U	44

4.1.2.6.4	Void	
4.1.2.6.5	Transmitter Spurious Emissions for UL-MIMO	44
4.1.2.7	Receiver Reference Sensitivity Level	45
4.1.2.7.1	Receiver Reference Sensitivity Level for single carrier	
4.1.2.7.2	Void	
4.1.2.7.3	Void	
4.1.2.7.4	Void	
4.1.2.7.5	Receiver Reference Sensitivity Level for UL-MIMO	
4.1.2.8	Receiver Adjacent Channel Selectivity (ACS)	49
4.1.2.8.1	Receiver Adjacent Channel Selectivity (ACS) for single carrier	49
4.1.2.8.2	Void	
4.1.2.8.3	Void	
4.1.2.8.4	VoidReceiver Adjacent Channel Selectivity (ACS) for UL-MIMO	
4.1.2.8.5 4.1.2.9		
4.1.2.9.1	Receiver Blocking Characteristics	
4.1.2.9.1	Void	
4.1.2.9.2	Void	
4.1.2.9.4	Void	
4.1.2.9.5	Receiver Blocking characteristics for UL-MIMO	
4.1.2.10	Receiver Spurious Response	
4.1.2.10.1	Receiver Spurious Response for single carrier	
4.1.2.10.2		
4.1.2.10.3		
4.1.2.10.4		
4.1.2.10.5		
4.1.2.11	Receiver Intermodulation Characteristic	
4.1.2.11.1	Receiver Intermodulation Characteristic for single carrier	
4.1.2.11.2		
4.1.2.11.3	Void	65
4.1.2.11.4	Void	65
4.1.2.11.5	Receiver Intermodulation Characteristic for UL-MIMO	65
4.1.2.12	Receiver Spurious Emissions	
4.1.2.12.1	Receiver Spurious Emissions for single carrier	
4.1.2.12.2	Void	65
4.1.2.12.3		
4.1.2.12.4		
4.1.2.13	Transmit OFF Power	
4.1.2.13.1	Transmit OFF Power for Single Carrier	
4.1.2.13.2		
4.1.2.13.3		
4.1.2.13.4		
4.1.2.13.5		
4.2	Technical requirements specification for Frequency Range 2	
4.2.1	Environmental profile	
4.2.2	Conformance requirements	
4.2.2.0 4.2.2.1	General Latra duction	
4.2.2.1	Introduction Transmitter Maximum Output Power	
4.2.2.2.1	Transmitter maximum output power for Single Carrier	
4.2.2.3	Transmitter Minimum Output Power	
4.2.2.3.1	Transmitter Minimum Output Power for Single Carrier	68
4.2.2.4	Transmitter Spectrum Emission Mask	
4.2.2.4.1	Transmitter Spectrum Emission Mask for Single Carrier	
4.2.2.5	Transmitter Adjacent Channel Leakage Power Ratio	
4.2.2.5.1	Transmitter Adjacent Channel Leakage Power Ratio for Single Carrier	
4.2.2.6	Transmitter Spurious Emissions	
4.2.2.6.1	Transmitter Spurious Emissions for Single Carrier	
4.2.2.7	Receiver Reference Sensitivity Level	
4.2.2.7.1	Reference sensitivity power level Single Carrier	
4.2.2.8	Receiver Adjacent Channel Selectivity (ACS)	
4.2.2.8.1	Receiver Adjacent Channel Selectivity Level Single Carrier	

4.2.2.9	Receiver Blocking Characteristics	
4.2.2.9.1	Inband blocking Single Carrier	
4.2.2.10	Receiver Spurious Emissions	
4.2.2.10.1	Receiver Spurious Emissions Single Carrier	76
	Technical requirements specification for Frequency Range 1 and Frequency Range 2 interworking	
	operation with other radios	
4.3.1	Environmental profile	
4.3.2	Conformance requirements	
4.3.2.0	General	
4.3.2.1	Introduction	
4.3.2.2	Transmitter Maximum Output Power	
4.3.2.2.1	Void	
4.3.2.2.2	Transmitter Maximum Output Power for EN-DC	78
4.3.2.3	Transmitter Minimum Output Power	
4.3.2.3.1	Void	
4.3.2.3.2	Transmitter Minimum Output Power for EN-DC	
4.3.2.4	Transmitter Spectrum Emission Mask	
4.3.2.4.1	Void	
4.3.2.4.2	Transmitter Spectrum Emission Mask for EN-DC	
4.3.2.5	Transmitter Adjacent Channel Leakage Power Ratio	82
4.3.2.5.1	Void	
4.3.2.5.2	Transmitter Adjacent Channel Leakage Power Ratio for EN-DC	
4.3.2.6	Transmitter Spurious Emissions	83
4.3.2.6.1	Void	83
4.3.2.6.2	Transmitter Spurious Emissions for EN-DC	
4.3.2.7	Receiver Reference Sensitivity Level	88
4.3.2.7.1	Void	88
4.3.2.7.2	Receiver Reference Sensitivity for EN-DC	88
4.3.2.7.3	$\Delta R_{IB,c}$, ΔR_{IBNC} for EN-DC	95
4.3.2.8	Receiver Adjacent Channel Selectivity (ACS)	97
4.3.2.8.1	Void	97
4.3.2.8.2	Receiver Adjacent Channel Selectivity for EN-DC	
4.3.2.9	Receiver Blocking Characteristics	98
4.3.2.9.1	Void	
4.3.2.9.2	Receiver Blocking Characteristics for EN-DC	
4.3.2.10	Receiver Spurious Response	100
4.3.2.10.1	Void	
4.3.2.10.2	Receiver Spurious Response for EN-DC	
4.3.2.11	Receiver Intermodulation Characteristic	
4.3.2.11.1	Void	
4.3.2.11.2	Wideband Intermodulation for EN-DC	
4.3.2.12	Receiver Spurious Emissions	
4.3.2.12.1	Void	
4.3.2.12.2	Receiver Spurious Emissions for EN-DC	103
5 Tes	ting for compliance with technical requirements	104
	Testing for compliance with technical requirements for Frequency Range 1	
5.1.1	Environmental conditions for testing	
5.1.2	Interpretation of the measurement results	
5.1.2	Essential radio test suites	
5.1.3.0	General	
5.1.3.1	Transmitter Maximum Output Power	
5.1.3.1.1	Transmitter Maximum Output Power for Single Carrier	
5.1.3.1.2	VoidVoid	
5.1.3.1.2	Void	
5.1.3.1.4	VoidVoid	
5.1.3.1.4	Transmitter Maximum Output Power for UL-MIMO	
5.1.3.1.5	•	
5.1.3.2.1	Transmitter Minimum Output Power	
5.1.3.2.1	VoidVoid	
5.1.3.2.2	VoidVoid	
5.1.3.2.4	VoidVoid	
J.1.J.4.4	۲ UIU	100

5.1.3.2.5	Transmitter Minimum Output Power for UL-MIMO	
5.1.3.3	Transmitter Spectrum Emission Mask	
5.1.3.3.1 5.1.3.3.2	Transmitter Spectrum Emission Mask for Single Carrier	
5.1.3.3.3	Void	
5.1.3.3.4	Void	
5.1.3.3.5	Transmitter Spectrum Emission Mask for UL-MIMO	
5.1.3.4	Transmitter Adjacent Channel Leakage Power Ratio	
5.1.3.4.1	Transmitter Adjacent Channel Leakage Power Ratio for Single Carrier	
5.1.3.4.2	Void	
5.1.3.4.3	Void	
5.1.3.4.4	Void	
5.1.3.4.5	Transmitter Adjacent Channel Leakage Power Ratio for UL-MIMO	
5.1.3.5	Transmitter Spurious Emissions	
5.1.3.5.1	Transmitter Spurious Emissions for Single Carrier	
5.1.3.5.2	Void	
5.1.3.5.3	Void	
5.1.3.5.4	Void	
5.1.3.5.5	Transmitter Spurious Emissions for UL-MIMO	
5.1.3.6	Receiver Reference Sensitivity Level	
5.1.3.6.1	Receiver Reference Sensitivity Level for Single Carrier	
5.1.3.6.2	Void	
5.1.3.6.3	Void	
5.1.3.6.4	Void	
5.1.3.6.5	Receiver Reference Sensitivity Level for UL-MIMO	
5.1.3.7	Receiver Adjacent Channel Selectivity (ACS)	
5.1.3.7.1	Receiver Adjacent Channel Selectivity for Single Carrier	
5.1.3.7.2	Void	
5.1.3.7.3	Void	
5.1.3.7.4	Void	
5.1.3.7.5	Receiver Adjacent Channel Selectivity for UL MIMO	
5.1.3.8	Receiver Blocking Characteristics	
5.1.3.8.1	Receiver Blocking Characteristics for Single Carrier	
5.1.3.8.2	Void	
5.1.3.8.3	Void	
5.1.3.8.4	Void	
5.1.3.8.5	Receiver Blocking Characteristics for UL-MIMO	
5.1.3.9	Receiver Spurious Response	
5.1.3.9.1	Receiver Spurious Response for Single Carrier	
5.1.3.9.2	Void	
5.1.3.9.3	Void	
5.1.3.9.4	Void	
5.1.3.9.5	Receiver Spurious Response for UL-MIMO	
5.1.3.10	Receiver Intermodulation Characteristics	
5.1.3.10.1	Receiver Intermodulation Characteristics for Single Carrier	
5.1.3.10.2	Void	
5.1.3.10.3	Void	156
5.1.3.10.4	Void	156
5.1.3.10.5	Receiver Intermodulation Characteristics for UL-MIMO	
5.1.3.11	Receiver Spurious Emissions	157
5.1.3.11.1	Receiver Spurious Emissions for Single Carrier	
5.1.3.11.2	Void	
5.1.3.11.3	Void	158
5.1.3.11.4	Void	
5.1.3.12	Transmit OFF power	
5.1.3.12.1	Transmit OFF power for Single Carrier	
5.1.3.12.2	Void	
5.1.3.12.3	Void	159
5.1.3.12.4	Void	
5.1.3.12.5	Transmit OFF power for UL-MIMO	159
5.2	Testing for compliance with technical requirements for Frequency Range 2	161
5.2.1	Environmental conditions for testing	161

5.2.2	Interpretation of the measurement results	
5.2.3	Essential radio test suites	161
5.2.3.0	General	
5.2.3.1	Transmitter Maximum Output Power	161
5.2.3.1.1	Transmitter maximum output power for Single Carrier	161
5.2.3.2	Transmitter Minimum Output Power	163
5.2.3.2.1	Transmitter minimum output power for Single Carrier	163
5.2.3.3	Transmitter Spectrum Emission Mask	164
5.2.3.3.1	Transmitter spectrum emission mask for Single Carrier	
5.2.3.4	Transmitter Adjacent Channel Leakage Power Ratio	
5.2.3.4.1	Transmitter adjacent channel leakage power ratio	
5.2.3.5	Transmitter Spurious Emissions	
5.2.3.5.1	Transmitter spurious emissions for single carrier	
5.2.3.6	Receiver Reference Sensitivity Level	
5.2.3.6.1	Receiver Sensitivity Level Single Carrier	
5.2.3.7	Receiver Adjacent Channel Selectivity (ACS)	
5.2.3.7.1	Receiver Adjacent Channel Selectivity Single Carrier	
5.2.3.8	Receiver Blocking Characteristics	
5.2.3.8.1	Receiver In-Band Blocking Single Carrier	
5.2.3.9	Receiver Spurious Emissions	
5.2.3.9.1	Receiver Spurious Emissions Single Carrier	
5.3	Testing for compliance with technical requirements for Frequency Range 1 and Frequency Range 2	
J.5	interworking operation with other radios	
5.3.1	Environmental conditions for testing	
5.3.2	Interpretation of the measurement results	
5.3.3	Essential radio test suites	
5.3.3.0	Introduction	
5.3.3.0.0	General	
5.3.3.0.1	Applicability and test coverage rules	
5.3.3.0.2	E-UTRA configuration for EN-DC FR1 tests applying the E-UTRA anchor-agnostic	
3.3.3.0.2	approach	179
5.3.3.0.3	E-UTRA configuration for EN-DC FR2 tests applying the E-UTRA anchor-agnostic	1/
3.3.3.0.3	approach	181
5.3.3.1	Transmitter Maximum Output Power	
5.3.3.1.1	Void	
5.3.3.1.2	Transmitter Maximum Output Power for EN-DC	
5.3.3.2	Transmitter Minimum Output Power	
5.3.3.2.1	Void	
5.3.3.2.2	Transmitter Minimum Output Power for EN-DC	
5.3.3.3	Transmitter Spectrum Emission Mask	
5.3.3.3.1	Void	
5.3.3.3.2	Transmitter Spectrum Emission Mask for EN-DC	
5.3.3.4	Transmitter Adjacent Channel Leakage Power Ratio	
5.3.3.4.1	Void	
5.3.3.4.1	Transmitter Adjacent Channel Leakage Power Ratio for EN-DC	
5.3.3.5	Transmitter Adjacent Channel Leakage Fower Ratio for EN-DC	
	Void	
5.3.3.5.1 5.3.3.5.2	Transmitter Spurious Emissions for EN-DC	
5.3.3.6	Receiver Reference Sensitivity Level	
5.3.3.6.1	Void	
5.3.3.6.2		
5.3.3.7 5.3.3.7.1	Receiver Adjacent Channel Selectivity (ACS)	
	Void	
5.3.3.7.2	Receiver Adjacent Channel Selectivity for EN-DC	
5.3.3.8	Receiver Blocking Characteristics	
5.3.3.8.1	Void	
5.3.3.8.2	Receiver Blocking Characteristics for EN-DC	
5.3.3.9	Receiver Spurious Response	
5.3.3.9.1	Void	
5.3.3.9.2	Receiver Spurious Response for EN-DC.	
5.3.3.10	Receiver Intermodulation Characteristic	
5.3.3.10.1	Void	226

10.2 Wideban	d Intermodulation for EN-DC	226
11 Receiver Spu		
11.2 Receiver	Spurious Emissions for EN-DC	227
x A (informative):	Relationship between the present document and the essential requirements of Directive 2014/53/EU	230
x B (normative):	Environmental profile	232
General		232
rest environment		232
x C (informative):	Selection of receiver parameters	234
Introduction		234
Receiver sensitivity		234
Receiver co-channel	rejection	234
Receiver adjacent cha	annel selectivity	234
Receiver spurious res	ponse rejection	234
Receiver blocking		234
Receiver radio-freque	ency intermodulation	235
Receiver dynamic ran	nge	235
Receiver unwanted en	missions in the spurious domain	235
x D (informative):	Recommended maximum uncertainty values	236
x E (informative):	Bibliography	237
rv		
	11 Receiver Spt 11.1 Void 11.2 Receiver X A (informative): X B (normative): General	Receiver Spurious Emissions

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations pertaining to these essential IPRs, if any, are publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "*Intellectual Property Rights (IPRs)*; *Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards*", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECTTM, **PLUGTESTS**TM, **UMTS**TM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. **3GPP**TM and **LTE**TM are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. **oneM2M**TM logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners. **GSM**[®] and the GSM logo are trademarks registered and owned by the GSM Association.

Foreword

This draft Harmonised European Standard (EN) has been produced by ETSI Technical Committee Mobile Standards Group (MSG), and is now submitted for the combined Public Enquiry and Vote phase of the ETSI Standardisation Request deliverable Approval Procedure.

For non-EU countries, the present document may be used for regulatory (Type Approval) purposes.

The present document has been prepared under the Commission's standardisation request C(2015) 5376 final [i.9] to provide one voluntary means of conforming to the essential requirements of Directive 2014/53/EU [i.2] on the harmonisation of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/EC.

Once the present document is cited in the Official Journal of the European Union under that Directive, compliance with the normative clauses of the present document given in Tables A-1 to A-3 confers, within the limits of the scope of the present document, a presumption of conformity with the corresponding essential requirements of that Directive, and associated EFTA regulations.

The present document is part 25 of a multi-part deliverable. Full details of the entire series can be found in part 1 [i.12].

Proposed national transposition of	Proposed national transposition dates								
Date of latest announcement of this EN (doa):	3 months after ETSI publication								
Date of latest publication of new National Standard or endorsement of this EN (dop/e):	6 months after doa								
Date of withdrawal of any conflicting National Standard (dow):	18 months after doa								

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Introduction

The present document is part of a set of standards developed by ETSI and is designed to fit in a modular structure to cover all radio and telecommunications terminal equipment within the scope of the Radio Equipment Directive [i.2]. The present document is produced following the guidance in ETSI EG 203 336 [i.3] as applicable.

1 Scope

1.0 General

The present document applies to the following radio equipment type:

• User Equipment for New Radio (NR).

Requirements throughout the present document are in many cases defined separately for different Frequency Ranges (FR). The frequency ranges in which NR can operate according to this version of the present document are identified as described in Table 1-1.

Table 1-1: Definition of frequency ranges

Frequency range designation	Corresponding frequency range
FR1	450 MHz - 7 125 MHz
FR2	24 250 MHz - 52 600 MHz

1.1 Operating bands in FR1

This radio equipment type is capable of operating in all or any part of the frequency bands of FR1 given in tables from 1.1-1 through 1.1-5.

Table 1.1-1: NR operating bands in FR1

NR operating	Uplink (UL) operating band UE transmit	Downlink (DL) operating band UE receive	Duplex Mode	Related EC/ECC Decision
band	Ful_low - Ful_high	F _{DL_low} - F _{DL_high}		
n1	1 920 MHz - 1 980 MHz	2 110 MHz - 2 170 MHz	FDD	[i.19] and [i.20]
n3	1 710 MHz - 1 785 MHz	1 805 MHz - 1 880 MHz	FDD	[i.17] and [i.18]
n7	2 500 MHz - 2 570 MHz	2 620 MHz - 2 690 MHz	FDD	[i.23]
n8	880 MHz - 915 MHz	925 MHz - 960 MHz	FDD	[i.17] and [i.18]
n20	832 MHz - 862 MHz	791 MHz - 821 MHz	FDD	[i.6] and [i.7]
n28	703 MHz - 748 MHz	758 MHz - 803 MHz	FDD	[i.8] and [i.11]
(note 1)				
n38	2 570 MHz - 2 620 MHz	2 570 MHz - 2 620 MHz	TDD	[i.22] and [i.23]
n40	2 300 MHz - 2 400 MHz	2 300 MHz - 2 400 MHz	TDD	[i.21]
n41	2 496 MHz - 2 690 MHz	2 496 MHz - 2 690 MHz	TDD	[i.22] and [i.23]
(note 2)				
n50	1 432 MHz - 1 517 MHz	1 432 MHz - 1 517 MHz	TDD	[i.14], [i.15] and
(note 3)				[i.16]
n51	1 427 MHz - 1 432 MHz	1 427 MHz - 1 432 MHz	TDD	[i.14] and [i.15]
(note 3)				
n65	1 920 MHz - 2 010 MHz	2 110 MHz - 2 200 MHz	FDD	[i.19], [i.20] and
(note 6)				[i.27]
n75	N/A	1 432 MHz - 1 517 MHz	SDL	[i.14], [i.15] and [i.16]
n76	N/A	1 427 MHz - 1 432 MHz	SDL	[i.14] and [i.15]
n77	3 300 MHz - 4 200 MHz	3 300 MHz - 4 200 MHz	TDD	[i.29] and [i.24]
(note 4)				
n78	3 300 MHz - 3 800 MHz	3 300 MHz - 3 800 MHz	TDD	[i.29] and [i.24]
(note 5)				
n80	1 710 MHz - 1 785 MHz	N/A	SUL	[i.17] and [i.18]
n81	880 MHz - 915 MHz	N/A	SUL	[i.17] and [i.18]
n82	832 MHz - 862 MHz	N/A	SUL	[i.6] and [i.7]
n83	703 MHz - 748 MHz	N/A	SUL	
n84	1 920 MHz - 1 980 MHz	N/A	SUL	[i.19] and [i.20]

NR		Uplink (UL) operating band	Downlink (DL) operating band	Duplex	Related EC/ECC			
operatin	g	UE transmit	UE receive	Mode	Decision			
band		Ful_low - Ful_high	F_{DL_low} - F_{DL_high}					
NOTE 1:			, NR UE in Band n28 operates betwe					
	(Ful	$_{low} = 703 \text{ MHz}$ and $F_{UL_high} = 736$	MHz) for the transmitter and between	758 MHz and	d 791 MHz			
	(FDL	$_{\text{Llow}} = 758 \text{ MHz}$ and $F_{DL_high} = 791$	MHz) for the receiver.					
NOTE 2:			NR UE in Band n41 operates betw	een 2 500 MH	Iz and 2 690 MHz			
	(Ful	$_{\text{-low}}$ = 2 500 MHz and $F_{\text{UL_high}}$ = 2 6	690 MHz).					
			d n51 is restricted to downlink only.					
NOTE 4:	In Europe, according to [i.29] and [i.24], NR UE in Band 77 operates between 3 400 MHz and 4 200 MHz							
	(Ful_low = 3 400 MHz and Ful_high = 3 800 MHz).							
NOTE 5:	In Europe, according to [i.29] and [i.24], NR UE in Band 78 operates between 3 400 MHz and 3 800 MHz							
	(Ful	_low = 3 400 MHz and FuL_high = 3 8	800 MHz).					
NOTE 6:	This band includes two frequency ranges that are harmonised in Europe:							
	(a)		io equipment in band n65 operates be					
			$_{low}$ = 2 110 MHz and F_{DL_high} = 2 170 I		ween 1 920 MHz			
	and 1 980 MHz for the receiver ($F_{UL_low} = 1$ 920 MHz and $F_{UL_high} = 1$ 980 MHz).							
	(b) Based on [i.27], radio equipment in band n65 operates between 2 170 MHz and 2 200 MHz for the							
	transmitter (F _{DL_low} = 2 170 MHz and F _{DL_high} = 2 200 MHz) and between 1 980 MHz and 2 010 MHz							
			MHz and $F_{UL_high} = 2010 MHz$) as the					
		Component (CGC) of a Mobile-sa	atellite service by reference to the pre	sent docume	nt.			

Table 1.1-2: Void

Table 1.1-3: Void

Table 1.1-4: Void

NR supplementary uplink is designed to operate in the operating band combination defined in Table 1.1-5, where all operating bands are within FR1.

Table 1.1-5: Operating band combination for SUL in FR1

NR Band combination for SUL	NR Band (Table 1.1-1)
SUL_n78-n80 (note 2)	n78, n80
SUL_n78-n81 (note 2)	n78, n81
SUL_n78-n82 (note 2)	n78, n82
SUL_n78-n83 (note 2)	n78, n83
SUL_n78-n84 (note 2)	n78, n84
	th NR UL and NR SUL carriers in a cell,

the switching time between NR UL carrier and NR SUL carrier is 0us.

NOTE 2: For UE supporting SUL band combination simultaneous Rx/Tx capability is mandatory.

The requirements for FR1 in the present document apply to the combination of channel bandwidths, SCS and operating bands shown in Table 1.1-6. The channel bandwidths are specified for both the TX and RX paths.

Table 1.1-6: Channel Bandwidths for Each NR band in FR1

					NR ban	d / SCS	/ UE Cha	annel ba	ndwidth)			
NR Band	SCS kHz	5 MHz	10 ^{1,2} MHz	15 ² MHz	20 ² MHz	25 ² MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 ⁴ MHz	100 MHz
	15	Yes	Yes	Yes	Yes	Yes ⁴	Yes ⁴	Yes ⁴	Yes ⁴				
n1	30		Yes	Yes	Yes	Yes ⁴	Yes ⁴	Yes ⁴	Yes ⁴				
	60		Yes	Yes	Yes	Yes ⁴	Yes ⁴	Yes ⁴	Yes ⁴				
	15	Yes	Yes	Yes	Yes	Yes	Yes						
n3	30		Yes	Yes	Yes	Yes	Yes						
	60		Yes	Yes	Yes	Yes	Yes						

			1 1 2	= 2		d / SCS /							
NR	SCS	5	10 ^{1,2}	15 ²	20 ²	25 ²	30	40	50	60	80	90 ⁴	100
Band	kHz 15	MHz Yes	MHz Yes	MHz Yes	MHz Yes	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
n7	30	162	Yes	Yes	Yes		<u> </u>			1			
117	60		Yes	Yes	Yes								
	15	Yes	Yes	Yes	Yes								
n8	30	103	Yes	Yes	Yes								
110	60		100	100	100					1			
	15	Yes	Yes	Yes	Yes								
n20	30		Yes	Yes	Yes								
	60												
	15	Yes	Yes	Yes	Yes ⁵								
n28	30		Yes	Yes	Yes ⁵								
	60												
	15	Yes	Yes	Yes	Yes	Yes ⁴	Yes ⁴	Yes ⁴					
n38	30		Yes	Yes	Yes	Yes ⁴	Yes ⁴	Yes ⁴					
	60		Yes	Yes	Yes	Yes ⁴	Yes ⁴	Yes ⁴					
	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes				
n40	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
	15		Yes	Yes	Yes		Yes ⁴	Yes	Yes				
n41	30		Yes	Yes	Yes		Yes ⁴	Yes	Yes	Yes	Yes	Yes	Yes
	60		Yes	Yes	Yes		Yes ⁴	Yes	Yes	Yes	Yes	Yes	Yes
	15	Yes	Yes	Yes	Yes			Yes	Yes				
n50	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes ³		
	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes ³		
	15	Yes											
n51	30												
	60												
	15	Yes	Yes	Yes	Yes								
n65	30		Yes	Yes	Yes								
	60		Yes	Yes	Yes								
	15	Yes	Yes	Yes	Yes								
n75	30		Yes	Yes	Yes								
	60		Yes	Yes	Yes						-		
- 70	15	Yes											
n76	30						-			1			
	60		Voc	Voc	Voc			Voo	Voc	-			
n77	15 30		Yes	Yes	Yes			Yes	Yes Yes	Voc	Voc	Voc	Voc
n77			Yes	Yes	Yes			Yes		Yes	Yes	Yes	Yes
	60 15		Yes Yes	Yes Yes	Yes Yes		 	Yes Yes	Yes Yes	Yes	Yes	Yes	Yes
n78	30		Yes	Yes	Yes		 	Yes	Yes	Yes	Yes	Yes	Yes
117 0	60		Yes	Yes	Yes		†	Yes	Yes	Yes	Yes	Yes	Yes
	15	Yes	Yes	Yes	Yes	Yes	Yes	103	103	163	163	100	163
n80	30	100	Yes	Yes	Yes	Yes	Yes			1	1		
.100	60		Yes	Yes	Yes	Yes	Yes		1		1		1
	15	Yes	Yes	Yes	Yes	. 55	. 55		1		1		
n81	30	. 55	Yes	Yes	Yes								
	60	1 22	1	1						1			
	15	Yes	Yes	Yes	Yes						1		
n82	30	1	Yes	Yes	Yes	1	1				1	1	
	60												
	15	Yes	Yes	Yes	Yes								
n83	30		Yes	Yes	Yes								
	60												
	15	Yes	Yes	Yes	Yes								
n84	30		Yes	Yes	Yes								
<u></u>	60		Yes	Yes	Yes								
NOTE 1:		enactrun			ot be acl	niewed for	30 kH2	909					

NOTE 1: 90 % spectrum utilization may not be achieved for 30 kHz SCS. NOTE 2: 90 % spectrum utilization may not be achieved for 60 kHz SCS.

NOTE 3: This UE channel bandwidth applies only to downlink.

NOTE 4: This UE channel bandwidth is optional in this version of the present document.

NOTE 5: For the 20 MHz bandwidth, the minimum requirements are specified for NR UL carrier frequencies confined to either 713 MHz - 723 MHz or 728 MHz - 738 MHz.

1.2 Operating bands in FR2

This radio equipment type is capable of operating in all or any part of the frequency bands of FR2 given in tables from 1.2-1 through 1.2-4.

NR is designed to operate in the FR2 operating bands defined in Table 1.2-1.

Table 1.2-1: NR operating bands in FR2

Operating Band	Uplink (UL) operating band UE transmit	Downlink (DL) operating band UE receive	Duplex Mode	Relevant EC/ECC Decision	
	Ful_low - Ful_high	FDL_low - FDL_high			
n257	26 500 MHz - 29 500 MHz	26 500 MHz - 29 500 MHz	TDD	[i.25] and [i.26]	
(note)					
n258	24 250 MHz - 27 500 MHz	24 250 MHz - 27 500 MHz	TDD	[i.25] and [i.26]	
NOTE: In Europe, according to [i.25] and [i.26], NR UE radio equipment in band n257 operates between 26 500 MHz					
and 27 500 MHz ($F_{UL_low} = 26 500$ MHz and $F_{UL_high} = 27 500$ MHz).					

Table 1.2-2: Void

Table 1.2-3: Void

NR UL-MIMO is designed to operate in the operating bands defined in Table 1.2-4.

Table 1.2-4: NR UL-MIMO operating bands in FR2

UL-MIMO operating band (Table 1.2-1)
n257
n258

The present document covers requirements for 5G NR User Equipment from 3GPPTM Release 15 defined in ETSI TS 138 101-1 [6], ETSI TS 138 101-2 [7], ETSI TS 138 101-3 [8]. This includes the requirements for 5G NR UE operating bands and 5G NR UE CA operating bands from 3GPPTM Release 15 defined in ETSI TS 138 101-1 [6], ETSI TS 138 101-2 [7], ETSI TS 138 101-3 [8]. Additionally, it includes requirements for selected NR operating bands from 3GPP Release 16.

Table 1.2-5: Void

The FR2 requirements in the present document apply to the combination of channel bandwidths, SCS and operating bands shown in Table 1.2-6. The channel bandwidths are specified for both the Tx and Rx paths.

Table 1.2-6: Channel bandwidths for each NR band

Operating band / SCS / UE channel bandwidth						
Operating band	SCS kHz	50 MHz	100 MHz	200 MHz	400 ² MHz	
2057	60	Yes	Yes	Yes	N/A	
n257	120	Yes	Yes	Yes	Yes	
~2F0	60	Yes	Yes	Yes	N/A	
n258	120	Yes	Yes	Yes	Yes	

NOTE 1: For test configuration tables from the transmitter and receiver tests in clause 5.2 and clause 5.3 that refer to this table and indicate test SCS to use, if referenced SCS value is not supported by the UE in UL and/or DL, select the closest SCS supported by the UE in both UL and DL.

NOTE 2: This UE channel bandwidth is optional in this version of the present document.

NOTE: The relationship between the present document and essential requirements of article 3.2 of Directive 2014/53/EU [i.2] is given in annex A.

1.3 Operating bands for Range 1 and Range 2 interworking operation with other radios

1.3.1 Inter-band EN-DC within FR1

Table 1.3.1-1: Inter-band EN-DC configurations within FR1 (two bands)

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)	Single UL allowed
DC_1A_n28A	DC_1A_n28A	No
DC_1A_n77A ²	DC_1A_n77A	DC_1_n77
DC_1A_n78A ²	DC_1A_n78A	No
DC_3A_n7A	DC_3A_n7A	No
DC_3A_n28A	DC_3A_n28A	No
DC_3A_n77A ²	DC_3A_n77A	DC_3_n77
DC_3A_n78A ² DC_3C_n78A ²	DC_3A_n78A	DC_3_n78
DC_7A_n28A	DC_7A_n28A	No
DC_7A_n78A ²	DC_7A_n78A	No
DC_7A-7A_n78A ²	DC_7A_n78A	No
DC_7C_n78A ²	DC_7A_n78A	No
DC_8A_n77A ²	DC_8A_n77A	No
DC_8A_n78A ²	DC_8A_n78A	No
DC_20A_n8A	DC_20A_n8A	DC_20_n8
DC_20A_n28A ^{3,4,5}	DC_20A_n28A	No
DC_20A_n78A ²	DC_20A_n78A	No
DC_28A_n77A ²	DC_28A_n77A	No
DC_28A_n78A ²	DC_28A_n78A	No
DC_38A_n78A ²	DC_38A_n78A	No
DC_41A_n77A	DC_41A_n77A	No
DC_41C_n77A		No
DC_41A_n78A DC_41C_n78A	DC_41A_n78A	No

NOTE 1: Uplink EN-DC configurations are the configurations supported by this version of the present document.

1.3.1a Void

1.3.2 Inter-band EN-DC including FR2

Table 1.3.2-1: Inter-band EN-DC configurations including FR2 (two bands)

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_1A_n257A	DC_1A_n257A
DC_3A_n257A	DC_3A_n257A
DC_3A_n258A	DC_3A_n258A

NOTE 2: Applicable for UE supporting inter-band EN-DC with mandatory simultaneous Rx/Tx capability.

NOTE 3: The frequency range in band n28 is restricted for this band combination to 703 MHz - 733 MHz for the UL and 758 - 788 MHz for the DL.

NOTE 4: The maximum power spectral density imbalance between downlink carriers is within 6 dB. The power spectral density imbalance condition also applies for these carriers when applicable EN-DC configuration is a subset of a higher order EN-DC configuration.

NOTE 5: The minimum requirements apply for synchronized DL carriers with a maximum receive time difference ≤ 3 μsec. The requirements also apply for these carriers when applicable EN-DC configuration is a subset of a higher order EN-DC configuration.

EN-DC configuration	Uplink EN-DC configuration (NOTE 1)
DC_7A_n257A	DC_7A_n257A
DC_7A-7A_n257A	DC_7A_n257A
DC_7A_n258A	DC_7A_n258A
DC_8A_n257A	DC_8A_n257A
DC_8A_n258A	DC_8A_n258A
DC_20A_n258A	DC_20A_n258A
DC_28A_n257A	DC_28A_n257A
DC_28A_n258A	DC_28A_n258A
DC_42A_n257A	
DC_42C_n257A	DC_42A_n257A
DC_42D_n257A	DC_42C_n257A
DC_42E_n257A	

NOTE 1: Uplink EN-DC configurations are the configurations supported by this version of the present document.

NOTE 2: Applicable for UE supporting inter-band EN-DC with mandatory simultaneous Rx/Tx capability for all of the above combinations.

1.3.3 Inter-band EN-DC including FR1 and FR2

1.3.3-1: Inter-band EN-DC configurations including FR1 and FR2 (three bands)

EN-DC configuration	Uplink EN-DC configuration (note 1)
DC_1A_n77A-n257A	DC_1A_n77A DC_1A_n257A DC_1A_n77A-n257A
DC_1A_n78A-n257A	DC_1A_n78A DC_1A_n257A DC_1A_n78A-n257A
DC_3A_n77A-n257A	DC_3A_n77A DC_3A_n257A DC_3A_n77A-n257A
DC_3A_n78A-n257A	DC_3A_n78A DC_3A_n257A DC_3A_n78A-n257A
DC_5A_n78A-n257A ²	DC_5A_n78A DC_5A_n257A
DC_7A_n78A-n257A	DC_7A_n78A DC_7A_n257A
DC_7A-7A_n78A-n257A	DC_7A_n78A DC_7A_n257A DC_7A_n78A-n257A

NOTE 1: Uplink EN-DC configurations are the configurations supported by this version of the present document.

NOTE 2: Applicable for UE supporting inter-band EN-DC with mandatory simultaneous Rx/Tx capability.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are necessary for the application of the present document.

[1]	ETSI TS 138 521-1 (V17.10.0) (10-2023): "5G; NR; User Equipment (UE) conformance
	specification; Radio transmission and reception; Part 1: Range 1 Standalone (3GPP TS 38.521-1
	version 17.0.0 Release 17)".

- [2] <u>ETSI TS 138 521-2 (V17.4.0) (10-2023)</u>: "5G; NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 2: Range 2 Standalone (3GPP TS 38.521-2 version 17.0.0 Release 17)".
- [3] <u>ETSI TS 138 521-3 (V17.10.0) (10-2023)</u>: "5G; NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios (3GPP TS 38.521-3 version 17.0.0 Release 17)".
- [4] <u>ETSI TS 138 508-1 (V17.10.0) (10-2023)</u>: "5G; 5GS; User Equipment (UE) conformance specification; Part 1: Common test environment (3GPP TS 38.508-1 version 17.0.0 Release 17)".
- [5] <u>ETSI TS 138 508-2 (V16.5.0) (09-2020)</u>: "5G; 5GS; User Equipment (UE) conformance specification; Part 2: Common Implementation Conformance Statement (ICS) proforma (3GPP TS 38.508-2 version 16.5.0 Release 16)".
- [6] <u>ETSI TS 138 101-1 (V15.24.0) (02-2024)</u>: "5G; NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone (3GPP TS 38.101-1 version 15.24.0 Release 15)".
- [7] <u>ETSI TS 138 101-2 (V15.25.0) (05-2024)</u>: "5G; NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone (3GPP TS 38.101-2 version 15.25.0 Release 15)".
- [8] <u>ETSI TS 138 101-3 (V15.24.0) (02-2024)</u>: "5G; NR; User Equipment (UE) radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios (3GPP TS 38.101-3 version 15.24.0 Release 15)".
- [9] IEC 60068-2-1 (2007): "Environmental testing Part 2-1: Tests Test A: Cold".
- [10] <u>IEC 60068-2-2 (2007)</u>: "Environmental testing Part 2-2: Tests Test B: Dry heat".
- [11] <u>ETSI TS 136 521-1 (V16.5.0) (09-2020)</u>: "LTE Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Conformance testing (3GPP TS 36.521-1 version 16.5.0 Release 16)".
- [12] <u>ETSI EN 301 908-13 (V13.2.1) (02-2022)</u>: "IMT cellular networks; Harmonised Standard for access to radio spectrum; Part 13: Evolved Universal Terrestrial Radio Access (E-UTRA) User Equipment (UE)".
- [13] <u>ETSI TS 136 508 (V14.5.0) (04-2018)</u>: "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet Core (EPC); Common test environments for User Equipment (UE) conformance testing (3GPP TS 36.508 version 14.5.0 Release 14)".
- [14] <u>ETSI TS 136 101 (V13.11.0) (04-2018)</u>: "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (3GPP TS 36.101 version 13.11.0 Release 13)".
- [15] <u>ETSI TS 136 214 (V15.5.0) (01-2020)</u>: "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer; Measurements (3GPP TS 36.214 version 15.5.0 Release 15)".
- [16] <u>ETSI TS 136 133 (V15.20.0) (07-2023)</u>: "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for support of radio resource management (3GPP TS 36.133 version 15.20.0 Release 15)".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1]	Void.
[i.2]	<u>Directive 2014/53/EU</u> of the European Parliament and of the Council of 16 April 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/EC.
[i.3]	ETSI EG 203 336 (V1.2.1) (05-2020): "Guide for the selection of technical parameters for the production of Harmonised Standards covering article 3.1(b) and article 3.2 of Directive 2014/53/EU".
[i.4]	Recommendation ITU-R SM.329-12 (2012): "Unwanted emissions in the spurious domain".
[i.5]	ETSI TR 100 028 (all parts) (V1.4.1): "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics".
[i.6]	Commission Decision 2010/267/EU of 6 May 2010 on harmonised technical conditions of use in the 790-862 MHz frequency band for terrestrial systems capable of providing electronic communications services in the European Union.
[i.7]	ECC Decision (09)03 of 30 October 2009 on harmonised conditions for mobile/fixed communications networks (MFCN) operating in the band 790 - 862 MHz.
[i.8]	Commission Implementing Decision (EU) 2016/687 of 28 April 2016 on the harmonisation of the 694-790 MHz frequency band for terrestrial systems capable of providing wireless broadband electronic communications services and for flexible national use in the Union.
[i.9]	Commission Implementing Decision C(2015) 5376 final of 4.8.2015 on a standardisation request to the European Committee for Electrotechnical Standardisation and to the European Telecommunications Standards Institute as regards radio equipment in support of Directive 2014/53/EU of the European Parliament and of the Council.
[i.10]	Void.
[i.11]	ECC Decision (15)01: "Harmonised technical conditions for mobile/fixed communications networks (MFCN) in the band 694-790 MHz including a paired frequency arrangement (Frequency Division Duplex 2x30 MHz) and an optional unpaired frequency arrangement (Supplemental Downlink)", Approved 06 March 2015.
[i.12]	ETSI EN 301 908-1 (V15.2.1) (01-2023): "IMT cellular networks; Harmonised Standard covering the essential requirements of article 3.2 of the Directive 2014/53/EU; Part 1: Introduction and common requirements".
[i.13]	Recommendation ERC 74-01 (05-2019): "Unwanted emissions in the spurious domain".
[i.14]	Commission Implementing Decision (EU) 2018/661 of 26 April 2018 amending Implementing Decision (EU) 2015/750 on the harmonisation of the 1452-1492 MHz frequency band for terrestrial systems capable of providing electronic communications services in the Union as regards its extension in the harmonised 1427-1452 MHz and 1492-1517 MHz frequency bands.
[i.15]	ECC Decision (13)03: "The harmonised use of the frequency band 1 452-1 492 MHz for

Mobile/Fixed Communications Networks Supplemental Downlink (MFCN SDL)".

- [i.16] <u>ECC Decision 17(06)</u>: "The harmonised use of the frequency bands 1 427-1 452 MHz and 1492-1518 MHz for Mobile/Fixed Communications Networks Supplemental Downlink (MFCN SDL)", Approved 17 November 2017, corrected 2 March 2018.
- [i.17] <u>Commission Implementing Decision (EU) 2022/173 of 7 February 2022</u> on the harmonisation of the 900 MHz and 1800 MHz frequency bands for terrestrial systems capable of providing electronic communications services in the Union and repealing Decision 2009/766/EC.
- [i.18] <u>ECC Decision (06)13</u> "Designation of the bands 880-915 MHz, 925-960 MHz, 1710-1785 MHz and 1805-1880 MHz for terrestrial UMTS, LTE, WiMAX and IoT cellular systems", Approved 01 December 2006, Amended 8 March 2019.
- [i.19] <u>Commission Implementing Decision (EU) 2020/667 of 6 May 2020</u> amending Decision 2012/688/EU as regards an update of relevant technical conditions applicable to the frequency bands 1 920-1 980 MHz and 2 110-2 170 MHz.
- [i.20] <u>ECC Decision (06)01</u>: The harmonised utilisation of the bands1920-1980 MHz and 2110-2170 MHz for mobile/fixed communications networks (MFCN) including terrestrial IMT systems, Approved 24 March 2006.
- [i.21] <u>ECC Decision 14(02)</u>: "Harmonised technical and regulatory conditions for the use of the band 2 300-2 400 MHz for Mobile/Fixed Communications Networks (MFCN)", Approved 27 June 2014.
- [i.22] Commission Implementing Decision (EU) 2020/636 of 8 May 2020 amending Decision 2008/477/EC as regards an update of relevant technical conditions applicable to the 2 500-2 690 MHz frequency band.
- [i.23] <u>ECC Decision 05(05)</u>: "Harmonised utilization of spectrum for Mobile/Fixed Communications Networks (MFCN) operating within the band 2 500-2 690 MHz", Approved 18 March 2005, Amended 05 July 2019.
- [i.24] <u>ECC Decision 11(06)</u>: "Harmonised frequency arrangements and least restrictive technical conditions (LRTC) for mobile/fixed communications networks (MFCN) operating in the band 3400-3800 MHz" Approved 09 December 2011, Amended 26 October 2018.
- [i.25] <u>Commission Implementing Decision (EU) 2020/590 of 24 April 2020</u> amending Decision (EU) 2019/784 as regards an update of relevant technical conditions applicable to the 24,25-27,5 GHz frequency band.
- [i.26] <u>ECC Decision 18(06)</u>: "Harmonised technical conditions for Mobile/Fixed Communications Networks (MFCN) in the band 24,25 27,5 GHz", Approved 06 July 2018, Last amended 20 November 2020.
- [i.27] <u>ECC Decision 06(09)</u>: "Designation of the bands 1980-2010 MHz and 2170-2200 MHz for use by systems in the Mobile-Satellite Service including those supplemented by a Complementary Ground Component (CGC)", Approved 01 December 2006, Amended 05 September 2007.
- [i.28] FCC 47 CFR Part 30: "Upper microwave flexible use service, §30.202 Power limits".
- [i.29] <u>Commission Implementing Decision (EU) 2019/235</u> of 24 January 2019 on amending Decision 2008/411/EC as regards an update of relevant technical conditions applicable to the 3 400-3 800 MHz frequency band".

3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the following terms apply:

channel bandwidth: RF bandwidth supporting a single NR RF carrier with the transmission bandwidth configured in the uplink or downlink of a cell

NOTE 1: The channel bandwidth is measured in MHz and is used as a reference for transmitter and receiver RF requirements.

NOTE 2: Channel bandwidth and the maximum transmission bandwidth configuration for one NR channel are described in Figure 3.1-1.

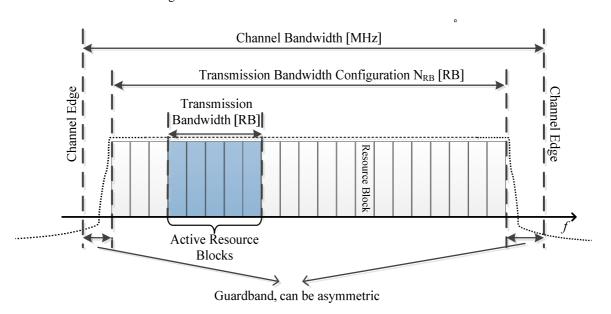


Figure 3.1-1: Definition of the channel bandwidth and the maximum transmission bandwidth configuration for one NR channel

channel edge: lowest and highest frequency of the carrier, separated by the channel bandwidth

EIRP (Link=Link angle, Meas=Link angle): measurement of the UE such that the link angle is aligned with the measurement angle

NOTE: EIRP (indicator to be measured) can be replaced by EIS, Frequency, EVM, carrier Leakage, In-band emission and OBW.

EIRP (Link=TX beam peak direction, Meas=Link angle): measurement of the EIRP of the UE such that the measurement angle is aligned with the beam peak direction within an acceptable measurement error uncertainty

NOTE: EIRP (indicator to be measured) can be replaced by Frequency, EVM, carrier Leakage, In-band emission and OBW.

EIS (equivalent isotropic sensitivity): sensitivity for an isotropic directivity device equivalent to the sensitivity of the discussed device exposed to an incoming wave from a defined AoA

EIS (Link=RX beam peak direction, Meas=Link angle): measurement of the EIS of the UE such that the measurement angle is aligned with the RX beam peak direction within an acceptable measurement error uncertainty

NOTE 1: The sensitivity is the minimum received power level at which specific requirement is met.

NOTE 2: Isotropic directivity is equal in all directions (i.e. 0 dBi).

link angle: DL-signal AoA from the view point of the UE, as described in annex J in ETSI TS 138 101-2 [7]

NOTE: If the beam lock function is used to lock the UE beam(s), the link angle can become any arbitrary AoA once the beam lock has been activated.

Maximum Output Power (MOP): mean power level per carrier of UE measured at the antenna connector in a specified reference condition

mean power: when applied to NR transmission this is the power measured in the operating system bandwidth of the carrier

NOTE: The period of measurement is assumed to be at least one subframe (1 ms) unless otherwise stated.

measurement angle: angle of measurement of the desired metric from the view point of the UE, as described in annex J in ETSI TS 138 101-2 [7]

network signalled value: signalling value sent from the BS to the UE to indicate additional unwanted emission requirements to the UE

occupied bandwidth: width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage $\beta/2$ of the total mean power of a given emission

operating band: frequency range (paired or unpaired) in which NR operates that is defined with a specific set of technical requirements

output power: mean power of one carrier of the UE, delivered to a load with resistance equal to the nominal load impedance of the transmitter

radiated interface boundary: operating band-specific radiated requirements reference point where the radiated requirements apply

radiated requirements reference point: for the RF measurement setup, the radiated requirements reference point is located at the centre of the quiet zone

NOTE: From the UE perspective, the reference point is the input of the UE antenna array.

reference bandwidth: bandwidth in which an emission level is specified

resource block: physical resource consisting of a number of symbols in the time domain and a number of consecutive subcarriers spanning 180 kHz in the frequency domain

RX beam peak direction: direction where the maximum total component of RSRP and thus best total component of EIS is found

sub-block: one contiguous allocated block of spectrum for transmission and reception by the same UE

NOTE: There may be multiple instances of sub-blocks within an RF bandwidth.

sub-block bandwidth: bandwidth of one sub-block

sub-block gap: frequency gap between two consecutive sub-blocks within an RF bandwidth, where the RF requirements in the gap are based on co-existence for un-coordinated operation

transmission bandwidth: bandwidth of an instantaneous transmission from a UE or BS, measured in Resource Block units

NOTE: See Figure 3.1-1.

TRP (Link=TX beam peak direction, Meas=TRP grid): measurement of the TRP of the UE such that the measurement angles are aligned with the directions of the TRP grid points within an acceptable measurement uncertainty while the link angle is aligned with the TX beam peak direction

NOTE: For requirements based on EIRP/EIS, the radiated interface boundary is associated to the far-field region.

TX beam peak direction: direction where the maximum total component of EIRP is found

UE transmission bandwidth configuration: set of resource blocks located within the UE channel bandwidth which may be used for transmitting or receiving by the UE

vehicular UE: UE embedded in a vehicle, permanently connected to an embedded antenna system that radiates externally for NR operating bands

NOTE: Vehicular UE does not refer to other UE form factors placed inside the vehicle.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

 $\begin{array}{ll} \Delta FHD & Range \ of \ harmonic \ distortion \ frequencies \\ \Delta f_{OOB} & \Delta \ Frequency \ of \ out\mbox{-}of\mbox{-}band \ emission \\ \Delta MBP \& \Delta_{MBs} & UE \ multi-band \ adjustment \ parameter \\ \end{array}$

ΔR_{IBNC} Allowed reference sensitivity relaxation due to support for intra-band non-contiguous CA

operation

 $BW_{Channel}$ Channel bandwidth

 $BW_{\mbox{\tiny Channel_CA}} \qquad \quad \mbox{Aggregated channel bandwidth, expressed in MHz}$

BW_{GB} Virtual guard band to facilitate transmitter (receiver) filtering above/below edge CCs

BW_{Interferer} Channel Bandwidth of the interferer

 $E_{\it RS}$ Transmitted energy per RE for reference symbols during the useful part of the symbol,

i.e. excluding the cyclic prefix, (average power normalized to the subcarrier spacing) at the

eNode B transmit antenna connector

 \hat{E}_s The received energy per RE during the useful part of the symbol, i.e. excluding the cyclic prefix,

averaged across the allocated RB(s) (average power within the allocated RB(s)), divided by the number of RE within this allocation and normalized to the subcarrier spacing) at the UE antenna

connector

BW_{UTRA} Channel Bandwidth UTRA

F Frequency

 $\begin{array}{ll} F_{Interferer}(offset) & Frequency offset of the interferer \\ F_{Interferer} & Frequency of the interferer \\ F_{Ioffset} & Frequency offset of the interferer \\ F_{C} & Frequency of the carrier centre frequency \\ \end{array}$

 $F_{\text{CA_low}}$ The centre frequency of the *lowest carrier*, expressed in MHz $F_{\text{CA_high}}$ The centre frequency of the *highest carrier*, expressed in MHz

 $\begin{array}{ll} F_{\text{edge_how}} & \text{The } \textit{lower edge} \text{ of aggregated channel bandwidth, expressed in MHz} \\ F_{\text{edge_high}} & \text{The } \textit{higher edge} \text{ of aggregated channel bandwidth, expressed in MHz} \end{array}$

 $F_{\text{\tiny offset_NS_23}} \hspace{1.5cm} Frequency \ offset \ in \ MHz \ needed \ if \ NS_23 \ is \ used$

F_{OOB} The boundary between the NR out of band emission and spurious emission domains

 I_o The power spectral density of the total input signal (power averaged over the useful part of the

symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalized to the subcarrier spacing) at the UE antenna connector,

including the own-cell downlink signal or the power spectral density of the total input signal at the UE antenna connector (power averaged over the useful part of the symbols within a given

bandwidth and normalized to the said bandwidth), including the own-cell downlink signal

 I_{or} The total transmitted power spectral density of the own-cell downlink signal (power averaged over

the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalized to the subcarrier spacing) at the eNode B

transmit antenna connector

 \hat{I}_{or} The total received power spectral density of the own-cell downlink signal (power averaged over the useful part of the symbols within the transmission bandwidth configuration, divided by the

total number of RE for this configuration and normalized to the subcarrier spacing) at the UE

antenna connector

 I_{ot} The received power spectral density of the total noise and interference for a certain RE (average

power obtained within the RE and normalized to the subcarrier spacing) as measured at the UE

antenna connector

 L_{CRB} Transmission bandwidth which represents the length of a contiguous resource block allocation

expressed in units of resources blocks

 $N_{\rm ac}$ The power spectral density of a white noise source (average power per RE normalized to the

subcarrier spacing), simulating interference from cells that are not defined in a test procedure, as

measured at the UE antenna connector

 N_{od} The power spectral density of a white noise source (average power per RE normalized to the

subcarrier spacing), simulating interference in non-CRS symbols in ABS subframe from cells that

are not defined in a test procedure, as measured at the UE antenna connector

 N_{ac2} The power spectral density of a white noise source (average power per RE normalized to the

subcarrier spacing), simulating interference in CRS symbols in ABS subframe from all cells that

are not defined in a test procedure, as measured at the UE antenna connector

 N_{o3} The power spectral density of a white noise source (average power per RE normalized to the

subcarrier spacing), simulating interference in non-ABS subframe from cells that are not defined

in a test procedure, as measured at the UE antenna connector

 $N_{\text{Offs-DL}}$ Offset used for calculating downlink EARFCN $N_{\text{Offs-UL}}$ Offset used for calculating uplink EARFCN

N_{RB} Transmission bandwidth configuration, expressed in units of resource blocks

N_{RB_agg} Aggregated Transmission Bandwidth Configuration The number of the aggregated RBs within the

fully allocated Aggregated Channel bandwidth

N_{tone} Transmission bandwidth configuration for category NB1, expressed in units of tones

N_{tone 3.75 kHz} Transmission bandwidth configuration for category NB1 with 3,75 kHz sub-carrier spacing,

expressed in units of tones

N_{tone 15 kHz} Transmission bandwidth configuration for category NB1 with 15 kHz sub-carrier spacing,

expressed in units of tones

 $egin{array}{lll} N_{UL} & Uplink \ EARFCN \\ N_{DL} & Downlink \ EARFCN \\ \end{array}$

N_{UL/DL} Uplink and Downlink EARFCN NS_x Network signalled value "x"

P Number of cell-specific antenna ports

p Antenna port number

P_{CMAX} Configured maximum UE output power

 P_{CMAX_L} Lower bound for configured maximum UE output power

P_{CMAX L.c} Lower bound for configured maximum UE output power for serving cell c

P_{CMAX_L_E-UTRA,c} Lower bound for configured maximum UE output power for serving cell c for E-UTRA P_{CMAX_L_f,c,NR} Lower bound for configured maximum UE output power for serving cell c for NR

 $P_{Interferer}$ Modulated mean power of the interferer

P_{UMAX} Maximum UE Power with possible power reduction due to modulation type, network signalling

values and location near the edge of the band

 R_{av} Minimum average throughput per RB

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AC Alternating current

ACLR Adjacent Channel Leakage Ratio
ACS Adjacent Channel Selectivity

AoA Angle of Arrival

ARFCN Absolute Radio-Frequency Channel Number

BPSK Binary Phase-Shift Keying

BS Base Station BW BandWidth

C_RNTI Cell Radio Network Temporary Identifier

CA Carrier Aggregation
CBW Channel Bandwidth
CC Component Carrier

CDM Code Division Multiplexing

CG Cell Group

CGC Complementary Ground Component

CH Channel
CP Cyclic Prefix

CQI Channel Quality Indicator

CW Continuous Wave DC Dual Connectivity

DCI Downlink Control Information
DFT-S Discrete Fourier Transform-Spread

DL DownLink

DMRS DeModulation Reference Signal

DUT Device under Test

EARFCN E-UTRA Absolute Radio Frequency Channel Number

ECC Electronic Communications Committee
EFTA European Free Trade Association
EIRP Effective Isotropic Radiated Power
EIS Equivalent Isotropic Sensitivity

EN-DC E-UTRAN New Radio - Dual Connectivity

EPRE Energy Per Resource Element ERP Effective radiated power

EU European Union

E-UTRA Evolved UMTS Terrestrial Radio Access

EVM Error vector magnitude FDD Frequency Division Duplex FR Frequency Range

FWA Fixed Wireless Access
GSM Global System for Mobile
HARQ Hybrid Acknowledge Request

IBB In-Band Blocking
IE Information element
IMD Intermodulation

IMT International Mobile Telecommunications

LB Lower Band
LO Local oscillator
LTE Long Term Evolution
MAC Medium Access Control
MBW Measurement BandWidth
MCG Master Cell Group

MIMO Multiple Antenna transmission

MOD Modulation

MOP Maximum Output Power
MPR Maximum Power Reduction
MSD Maximum Sensitivity Degradation

MSG Mobile Standards Group NC Normal Conditions

NE-DC NR-E-UTRA Dual Connectivity

NR ACLR New Radio Adjacent Channel Leakage Ratio

NR New Radio NS Network Signalling

NS_X Network Signalling lable for specific bands

NSA Non-Stand-Alone OBW Occupied Bandwidth

OCNG OFDMA Channel Noise Generator

OFDM Orthogonal Frequency Division Multiplexing

OOB Out Of Band

OP OFDMA Channel Noise Generator Pattern

OTA Over The Air
PC Power Class
PC3 Power Class 3

PCC Primary Component Carrier

PDCCH Physical Downlink Control Channel
PDSCH Physical Downlink Shared Channel
PHS Personal Handy-phone System
PUSCH Physical Uplink Shared Channel
QAM Quadrature amplitude modulation
QPSK Quadrature Phase Shift Keying

QZ Quiet Zone
RB Resource Block
RBC Radio Bearer Control
RE Resource Element

REFSENS REFerence SENSitivity power level

RF Radio Frequency

RIB Radiated Interface Boundary
RMC Reference Measurement Channel
RMS Root Mean Square (value)
RoT Rise over Thermal

RoT Rise over Thermal RRC Root Raised Cosine RS Reference Signal

RSRP Reference Signal Received Power

RX Receiver SA Stand Alone

SCC Secondary Component Carrier

SCG Secondary Cell Group
SCS Subcarrier spacing
SDL Supplementary Downlink
SNR Signal to Noise Ratio
SRS Sounding Reference Signal

SS System Simulator
SUL Supplementary Uplink
TA Time Alignment
TDD Time Division Duplex
TE Test Equipment
TH Temperature High

TH/VH High extreme Temperature/High extreme Voltage TH/VL High extreme Temperature/Low extreme Voltage

TL Temperature Low

TL/VH Low extreme Temperature/High extreme Voltage TL/VL Low extreme Temperature/Low extreme Voltage

TPC Transmitter Power Control

TR Technical Report
TRP Total Radiated Power
TS Technical Specification

TX Transmitter

UBF Beamlock test Function UE User Equipment

UL UpLink

UL-MIMO Uplink Multiple Antenna transmission UTRA Universal Terrestrial Radio Access

VH Higher extreme Voltage VL Lower extreme Voltage

4 Technical requirements specifications

4.1 Technical requirements specification for Frequency Range 1

4.1.1 Environmental profile

The technical requirements of the present document apply under the environmental profile for operation of the equipment, which shall be in accordance with its intended use. The equipment shall comply with all the technical requirements of the present document at all times when operating within the boundary limits of the operational environmental profile defined by its intended use.

4.1.2 Conformance requirements

4.1.2.0 General

The requirements in the present document are based on the assumption that the operating band (see tables 1.1-1 through 1.1-5) is shared between systems of the IMT family (for band n3 and n8 also GSM) or systems having compatible characteristics.

The transmission bandwidth configuration in Table 5.3.2-1 of ETSI TS 138 101-1 [6] shall be supported for each of the specified channel bandwidths in Table 1.1-6.

NR UE that complies with the NR Band n50 minimum requirements in the present document shall also comply with the NR Band n51 minimum requirements.

NR UE that complies with the NR Band n65 minimum requirements in the present document shall also comply with the NR Band n1 minimum requirements.

NR UE that complies with the NR Band n75 minimum requirements in the present document shall also comply with the NR Band n76 minimum requirements.

4.1.2.1 Introduction

To meet the essential requirement under article 3.2 of Directive 2014/53/EU [i.2] for IMT User Equipment (UE), a set of essential parameters in addition to those in ETSI EN 301 908-1 [i.12] have been identified. Table 4.1.2.1-1 provides a cross-reference between these essential parameters and the corresponding technical requirements for equipment within the scope of the present document.

Table 4.1.2.1-1: Cross references

Essential parameter		Corresponding technical requirements			
Transmitter spectrum mask	4.1.2.4	Transmitter spectrum emissions mask	5.1.3.3		
Transmitter unwanted emissions in the	4.1.2.5	Transmitter adjacent channel leakage power	5.1.3.4		
out-of-band domain	ratio				
Transmitter unwanted emissions in the spurious domain	4.1.2.6	Transmitter spurious emissions	5.1.3.5		
Transmitter power limits	4.1.2.2	Transmitter maximum output power	5.1.3.1		
Transmitter Power Control (TPC)	4.1.2.3	Transmitter minimum output power	5.1.3.2		
Transmitter power accuracy	4.1.2.2	Transmitter maximum output power	5.1.3.1		
Receiver unwanted emissions in the	4.1.2.12	Pacaivar enurious amissions	5.1.3.11		
spurious domain	4.1.2.12	Receiver spurious emissions	5.1.5.11		
Receiver blocking	4.1.2.9	Receiver blocking characteristics	5.1.3.8		
Receiver desensitization	4.1.2.3	Receiver blocking characteristics			
Receiver spurious response rejection	4.1.2.10	Receiver spurious response	5.1.3.9		
Receiver radio-frequency intermodulation	4.1.2.11	Receiver intermodulation characteristics	5.1.3.10		
Receiver adjacent signal selectivity	4.1.2.8	Receiver adjacent channel selectivity (ACS)	5.1.3.7		
Receiver sensitivity	4.1.2.7	Receiver reference sensitivity level	5.1.3.6		
Equipment energting under the central of a	ETSI EN 301 908-1 [i.12], clause 4.2.4 Control and		-		
Equipment operating under the control of a lnetwork	Monitorin				
HELWOIK	4.1.2.13	5.1.3.12			

Unless otherwise stated, the transmitter characteristics are specified at the antenna connector of the UE with a single or multiple transmit antenna(s). For UE with integral antenna only, a reference antenna with a gain of 0 dBi is assumed.

Transmitter requirements for UL MIMO operation apply when the UE transmits on 2 ports on the same CDM group. The UE may use higher MPR values outside this limitation.

4.1.2.2 Transmitter Maximum Output Power

4.1.2.2.1 Transmitter Maximum Output Power for Single Carrier

4.1.2.2.1.1 Definition

The following UE Power Classes define the maximum output power for any transmission bandwidth within the channel bandwidth of NR carrier unless otherwise stated. The period of measurement shall be at least one subframe (1 ms).

4.1.2.2.1.2 Limits

The maximum output power for UE with power class 3 shall be within the range in Table 4.1.2.2.1.2-1.

The maximum output power for UE with power class 2 shall be within the range in Table 4.1.2.2.1.2-2.

Table 4.1.2.2.1.2-1: Maximum Output Power requirement for Power Class 3

ND		Power	Class 3	ss 3		
NR band	BW ≤ 4	0 MHz	40 MHz < BW ≤ 100 MHz			
Dariu	Lower limit (dBm)	Upper limit (dBm)	Lower limit (dBm)	Upper limit (dBm)		
n1	20,3	25,7	20,0	26,0		
n3	20,3	25,7				
	(note 2)					
n7	20,3	25,7				
	(note 2)					
n8	20,3	25,7				
110	(note 2)					
n20	20,3	25,0				
	(note 2)					
n28	20,3	25,0				
n38	20,3	25,7				
n40	20,3	25,0	20,0	25,0		
n41	20,3	25,7	20,0	26,0		
11-11	(note 2)		(note 2)			
n50	20,3	25,7	20,0	26,0		
n51	20,3	25,7				
n65	20,3	25,7				
n77	19,0	26,0	19,0	26,0		
n78	19,0	26,0	19,0	26,0		
n80	20,3	25,7				
n81	20,3	25,7				
n82	20,3	25,7				
n83	19,8	25,7				
n84	20,3	25,7				

NOTE 1: Power class 3 is the default power class unless otherwise stated.

NOTE 2: Refers to the transmission bandwidths confined within Fullow and Fullow + 4 MHz or Fullow - 4 MHz and Fullow, the maximum output power requirement applies by reducing the lower limit by 1,5 dB.

Table 4.1.2.2.1.2-2: Maximum Output Power requirement for Power Class 2

NR		Power Clas	s 2 (dBm)				
band	BW ≤ 4	0 MHz	40 MHz < BW ≤ 100 MHz				
Daliu	Lower limit (dBm)	Upper limit (dBm)	Lower limit (dBm)	Upper limit (dBm)			
n41	22,3	28,7	22,0	29,0			
1141	(note 2)		(note 2)				
n77	22,0	29,0	22,0	29,0			
n78	22,0	29,0	22,0	29,0			

NOTE 1: Power class 3 is the default power class unless otherwise stated.

NOTE 2: Refers to the transmission bandwidths confined within Fullow and Fullow + 4 MHz or Fullow - 4 MHz and Fullow, the maximum output power requirement applies by reducing the lower limit by 1,5 dB.

NOTE: These requirements do not take into account the maximum power reductions allowed to the UE subject to certain transmission conditions specified in ETSI TS 138 101-1 [6], clauses 6.2.2 and 6.2.3.

4.1.2.2.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.1.3.1.1 of the present document.

4.1.2.2.2	Void
-----------	------

4.1.2.2.3 Void

4.1.2.2.4 Void

4.1.2.2.5 Transmitter Maximum Output Power for UL-MIMO

4.1.2.2.5.1 Definition

For power class 2 UE with two transmit antenna connectors in a closed-loop spatial multiplexing scheme, the maximum output power for any transmission bandwidth within the channel bandwidth is specified in Table 4.1.2.2.5.2-1. The requirements shall be met with the UL MIMO configurations specified in Table 6.2D.1.3-2 of ETSI TS 138 521-1 [1]. For UE supporting UL MIMO, the maximum output power is defined as the sum of the maximum output power from both UE antenna connectors. The period of measurement shall be at least one subframe (1 ms).

The requirements shall be met with the UL MIMO configurations of using 2-layer UL MIMO transmission with a codebook of $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. DCI Format for UE configured in PUSCH transmission mode for uplink single-user MIMO shall be used.

If UE is scheduled for single antenna-port PUSCH transmission by DCI format 0_0 or by DCI format 0_1 for single antenna port codebook based transmission, the requirements in clause 4.1.2.2.1 apply for the power class as indicated by the *ue-PowerClass* field in capability signalling.

4.1.2.2.5.2 Limits

The maximum output power shall be within the range in Table 4.1.2.2.5.2-1.

Table 4.1.2.2.5.2-1: UE Power Class for UL MIMO in closed loop spatial multiplexing scheme

		Power Cla	ss 2 (dBm)			Power Clas	s 3 (dBm)	
NR	BW ≤ 40 MHz		40 MHz < BV	V ≤ 100 MHz	BW ≤ 4	0 MHz	40 MHz < BV	V ≤ 100 MHz
band	Lower limit (dBm)	Upper limit (dBm)	Lower limit (dBm)	Upper limit (dBm)	Lower limit (dBm)	Upper limit (dBm)	Lower limit (dBm)	Upper limit (dBm)
n41	22,3 (note 1)	28,7	22,0 (note 1)	29,0	19,3 (note 1)	25,7	19,0 (note 1)	26,0
n77	22,0	29,0	22,0	29,0	19,0	26,0	19,0	26,0
n78	22,0	29,0	22,0	29,0	19,0	26,0	19,0	26,0

NOTE 1: Refers to the transmission bandwidths confined within Fullow and Fullow + 4 MHz or Fullhigh - 4 MHz and Fullhigh, the maximum output power requirement applies by reducing the lower limit by 1,5 dB.

NOTE 2: Power class 3 is the default power class unless otherwise stated.

NOTE: These requirements do not take into account the maximum power reductions allowed to the UE subject to certain transmission conditions specified in ETSI TS 138 101-1 [6], clauses 6.2D-2 and 6.2D-3.

4.1.2.2.5.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.1.3.1.5 of the present document.

4.1.2.3 Transmitter Minimum Output Power

4.1.2.3.1 Transmitter Minimum Output Power for Single Carrier

4.1.2.3.1.1 Definition

The minimum output power of the UE is defined as the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks) when the power is set to a minimum value. The minimum output power is defined as the mean power in at least one sub-frame (1 ms).

4.1.2.3.1.2 Limits

The minimum output power shall not exceed the values specified in Table 4.1.2.3.1.2-1.

Table 4.1.2.3.1.2-1: Minimum output power

Channel bandwidth	Minimur	n output power (dBm)	Measurement bandwidth (MHz) 4,515 9,375 14,235 19,095 23,955 28,815 38,895 48,615 58,35			
(MHz)	f ≤ 3,0 GHz	3,0 GHz < f ≤ 6,0 GHz				
5	-39	-38,7	4,515			
10	-39	-38,7	9,375			
15	-39	-38,7	14,235			
20	-39	-38,7	19,095			
25	-38	-37,7	23,955			
30	-37,2	-36,9	28,815			
40	-36	-35,7	38,895			
50	-34,7	-34,7	48,615			
60	-33,9	-33,9	58,35			
80	-32,7	-32,7	78,15			
90	-32,2	-32,2	88,23			
100	-31,7	-31,7	98,31			

4.1.2.3.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.1.3.2.1 of the present document.

1.	1 2	3.2	1	/	oi	ı
4.	I .Z.		V	/ (()	ı

4.1.2.3.3 Void

4.1.2.3.4 Void

4.1.2.3.5 Transmitter Minimum Output Power for UL-MIMO

4.1.2.3.5.1 Definition

For UE with two transmit antenna connectors in a closed-loop spatial multiplexing scheme, the minimum output power is defined as the sum of the mean power at each UE antenna connector in one sub-frame (1 ms).

If UE is scheduled for single antenna-port PUSCH transmission by DCI format 0_0 or by DCI format 0_1 for single antenna port codebook based transmission, the requirements in clause 4.1.2.3.1 apply.

4.1.2.3.5.2 Limits

The minimum output power shall not exceed the values specified in Table 4.1.2.3.1.2-1.

4.1.2.3.5.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.1.3.2.5 of the present document.

4.1.2.4 Transmitter Spectrum Emission Mask

4.1.2.4.1 Transmitter Spectrum Emission Mask for Single Carrier

4.1.2.4.1.1 Definition

The Out of band emissions are unwanted emissions immediately outside the assigned channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a spectrum emission mask and an adjacent channel leakage power ratio.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

4.1.2.4.1.2 Limits

4.1.2.4.1.2.1 General spectrum emission mask

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the assigned NR channel bandwidth. The power of any UE emission shall fulfil requirements in tables 4.1.2.4.1.2.1-1 and 4.1.2.4.1.2.1-2.

Table 4.1.2.4.1.2.1-1: General NR spectrum emission mask, for BW \leq 100 MHz and f \leq 3,0 GHz

				Spect	rum emis	sion limit	(dBm) / C	hannel bar	dwidth				
Δf _{00В} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Measurement bandwidth
± 0 - 1	-11,5	-11,5	-11,5	-11,5	-11,5	-11,5	-11,5						1 % channel bandwidth
± 0 - 1								-22,5	-22,5	-22,5	-22,5	-22,5	30 kHz
± 1 - 5	-8,5	-8,5	-8,5	-8,5	-8,5	-8,5	-8,5	-8,5	-8,5	-8,5	-8,5	-8,5	
± 5 - 6 ± 6 - 10	-11,5 -23,5	-11,5	-11,5	-11,5									
± 10 - 15		-23,5		-11,5	-11,5	-11,5							
± 15 - 20			-23,5			-11,5	-11,5						
± 20 - 25				-23,5			-11,5	-11,5					
± 25 - 30					-23,5		_	-11,5	-11,5				
± 30 - 35						-23,5	_		-11,5	-11,5			
± 35 - 40										-11,5	-11,5		
± 40 - 45							-23,5				-11,5	11,5	1 MHz
± 45 - 50												11,5	1 1011 12
± 50 - 55								-23,5					
± 55 - 60													
± 60 - 65									-23,5				
± 65 - 80													
± 80 - 85										-23,5			
± 85 - 90													
± 90 - 95											-23,5		
± 95 - 100													
± 100 - 105												-23,5	

NOTE 1: The first and last measurement position with a 30 kHz filter is at Δf_{OOB} equals to 0,015 MHz and 0,985 MHz.

NOTE 2: At the boundary of spectrum emission limit, the first and last measurement position with a 1 MHz filter is the inside of +0,5 MHz and -0,5 MHz, respectively.

NOTE 3: The measurements are to be performed above the upper edge of the channel and below the lower edge of the channel.

Table 4.1.2.4.1.2.1-2: General NR spectrum emission mask, for BW \leq 100 MHz and 3,0 GHz < f \leq 4,2 GHz and 4,2 GHz < f \leq 6,0 GHz

	Spectrum emission limit (dBm) / Channel bandwidth												
Δf _{OOB} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Measurement bandwidth
(IVITIZ)	IVITZ	IVITIZ	IVITIZ	IVITIZ	IVITIZ	IVITIZ	IVITZ	IVITIZ	IVITZ	IVITIZ	IVITIZ	IVITZ	
± 0 - 1	-11.2	-11,2	-11.2	-11,2	-11 2	-11 2	-11,2						1 % channel
	11,2	11,2	, _	11,2	11,2	11,2	11,2						bandwidth
± 0 - 1								-22,2	-22,2	-22,2	-22,2	-22,2	30 kHz
±1-5	-8,2	-8,2	-8,2	-8,2	-8,2	-8,2	-8,2	-8,2	-8,2	-8,2	-8,2	-8,2	1 MHz

			S	pectrum en	nission lim	nit (dBm)	/ Channel	bandwidt	h				
Δf _{OOB} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Measurement bandwidth
±5-6	-11,2	11.2											
± 6 - 10	-23,2	-11,2	-11,2	-11,2									
± 10 - 15		-23,2		-11,2	-11,2	-11,2							
± 15 - 20			-23,2			-11,2	-11,2						
± 20 - 25				-23,2			-11,2	110					
± 25 - 30					-23,2			-11,2	-11,2				
± 30 - 35						-23,2			-11,2	-11,2			
± 35 - 40										-11,2	11.0		
± 40 - 45							-23,2				-11,2	11.0	
± 45 - 50												-11,2	
± 50 - 55								-23,2					
± 55 - 60													
± 60 - 65									-23,2				
± 65 - 80													
± 80 - 85										-23,2			
± 85 - 90													
± 90 - 95											-23,2	Ī	
± 95 - 100												Ī	
± 100 - 105												-23,2	

NOTE 1: The first and last measurement position with a 30 kHz filter is at Δf_{OOB} equals to 0,015 MHz and 0,985 MHz.

NOTE 2: At the boundary of spectrum emission limit, the first and last measurement position with a 1 MHz filter is the inside of +0,5 MHz and -0,5 MHz, respectively.

NOTE 3: The measurements are to be performed above the upper edge of the channel and below the lower edge of the channel.

4.1.2.4.1.2.2 Additional spectrum emission mask

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

This clause specifies the requirements for the specified NR band for an additional spectrum emission requirement for different NS values.

When "NS_04" is indicated in the cell (applicable to band n41):

the power of any UE emission shall fulfil requirements in tables 4.1.2.4.1.2.2-1.

Table 4.1.2.4.1.2.2-1: Additional requirements for "NS 04", for BW \leq 100 MHz and f \leq 3,0 GHz

		Sp	ectrun				Bm) / m nnel ba			pandwidth
Δf _{OOB} МHz	10 MHz	15 MHz	20 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Measurement bandwidth
± 0 - 1	-8,5	3,5 -8,5 -8,5 -8,5 2 % ch						2 % channel bandwidth		
							-8	3,5		1 MHz
±1-5					-8,5	i				
± 5 - X					11,5	5				1 MHz
± X - (BW _{Channel} + 5 MHz) -23,5										
NOTE: X is defined in Table 6.5.2.3.2-1 of ETSI TS 138 101-1 [6] for CP-OFDM and Table 6.5.2.3.2-2 of ETSI										

15 138 101-1 [6] for DF1-5-OFDM.

4.1.2.4.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.1.3.3.1 of the present document.

4.1.2.4.2 Void

4.1.2.4.3 Void

4.1.2.4.4 Void

4.1.2.4.5 Transmitter Spectrum Emission Mask for UL-MIMO

4.1.2.4.5.1 Definition

For UE supporting UL MIMO, the requirements for Out of band emissions resulting from the modulation process and non-linearity in the transmitters is defined as the sum of the emissions from both UE transmit antenna connectors.

If UE is scheduled for single antenna-port PUSCH transmission by DCI format 0 0 or by DCI format 0 1 for single antenna port codebook based transmission, the requirements in clause 4.1.2.4.1 apply.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

4.1.2.4.5.2 Limits

4.1.2.4.5.2.1 General spectrum emission mask

For UEs with two transmit antenna connectors in a closed-loop spatial multiplexing scheme, the requirements in clause 4.1.2.4.1.2.1 apply. The requirements shall be met with UL MIMO configurations described in clause 4.1.2.2.5.

4.1.2.4.5.2.2 Additional spectrum emission mask

For UEs with two transmit antenna connectors in a closed-loop spatial multiplexing scheme, the requirements in clause 4.1.2.4.1.2.2 apply. The requirements shall be met with UL MIMO configurations described in clause 4.1.2.2.5.

4.1.2.4.5.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.1.3.3.5 of the present document.

4.1.2.5 Transmitter Adjacent Channel Leakage Power Ratio

4.1.2.5.1 Transmitter Adjacent Channel Leakage Power Ratio for Single Carrier

4.1.2.5.1.1 Definition

The Out of band emissions are unwanted emissions immediately outside the assigned channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a spectrum emission mask and an adjacent channel leakage power ratio.

Adjacent channel leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

NR adjacent channel leakage power ratio (NR_{ACLR}) is the ratio of the filtered mean power centred on the assigned NR channel frequency to the filtered mean power centred on an adjacent NR channel frequency at nominal channel spacing.

UTRA adjacent channel leakage power ratio (UTRA $_{ACLR}$) is the ratio of the filtered mean power centred on the assigned NR channel frequency to the filtered mean power centred on an adjacent(s) UTRA channel frequency.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

4.1.2.5.1.2 Limits

4.1.2.5.1.2.1 NR ACLR

The assigned NR channel power and adjacent NR channel power are measured with rectangular filters with measurement bandwidths specified in Table 4.1.2.5.1.2.1-0.

Table 4.1.2.5.1.2.1-0: NR ACLR measurement bandwidth

	NR channel bandwidth / NR ACLR measurement bandwidth											
	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
NR ACLR	141112	141112	141112	101112		2	101112	141112	1411.12	101112		
measurement bandwidth (MHz)	4,515	9,375	14,235	19,095	23,955	28,815	38,895	48,615	58,35	78,15	88,23	98,31

If the measured adjacent channel power is greater than -50 dBm then the NR_{ACLR} shall be higher than the value specified in Table 4.1.2.5.1.2.1-1.

Table 4.1.2.5.1.2.1-1: NR ACLR requirement

			Power class 2			Power class 3	
	Power		BW ≤ 100 MHz			BW ≤ 100 MHz	
	class 1	f ≤ 3,0 GHz	3,0 GHz < f ≤ 4,2 GHz	4,2 GHz < f ≤ 6,0 GHz	f ≤ 3,0 GHz	3,0 GHz < f ≤ 4,2 GHz	4,2 GHz < f ≤ 6,0 GHz
NRACLR		30,2 dB	30,2 dB	30,2 dB	29,2 dB	29,2 dB	29,2 dB

4.1.2.5.1.2.2 UTRA ACLR

UTRA ACLR requirement is applicable when signalled by the network with network signalling value indicated by the field *additionalSpectrumEmission*.

 $UTRA_{ACLR}$ is specified for the first adjacent UTRA channel ($UTRA_{ACLR1}$) which centre frequency is \pm 2,5 MHz from the NR channel edge and for the 2^{nd} adjacent UTRA channel ($UTRA_{ACLR2}$) which centre frequency is \pm 7,5 MHz from the NR channel edge.

The UTRA channel power is measured with an RRC filter with roll-off factor α =0,22 and bandwidth of 3,84 MHz. The assigned NR channel power is measured with a rectangular filter with measurement bandwidth specified in Table 4.1.2.5.1.2.1-0.

If the measured adjacent channel power is greater than -50 dBm then the $UTRA_{ACLR1}$ and $UTRA_{ACLR2}$ shall be higher than the value specified in Table 4.1.2.5.1.2.2-1.

Table 4.1.2.5.1.2.2-1: UTRA ACLR requirement

	Power class 3
UTRA _{ACLR1}	32,2 dB
UTRA _{ACLR2}	35,2 dB

4.1.2.5.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.1.3.4.1 of the present document.

4.1.2.5.2	Void
4.1.2.5.3	Void
4.1.2.5.4	Void
4.1.2.5.5	Transmitter Adjacent Channel Leakage Power Ratio for UL-MIMO
4.1.2.5.5.1	Definition

For UE supporting UL MIMO, the requirements for Out of band emissions resulting from the modulation process and non-linearity in the transmitters is defined as the sum of the emissions from both UE transmit antenna connectors.

If UE is scheduled for single antenna-port PUSCH transmission by DCI format 0_0 or by DCI format 0_1 for single antenna port codebook based transmission, the requirements in clause 4.1.2.5.1 apply.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

4.1.2.5.5.2 Limits

For UEs with two transmit antenna connectors in a closed-loop spatial multiplexing scheme, the requirements in clause 4.1.2.5.1 apply. The requirements shall be met with UL MIMO configurations described in clause 4.1.2.2.5.

4.1.2.5.5.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.1.3.4.5 of the present document.

4.1.2.6 Transmitter Spurious Emissions

4.1.2.6.1 Transmitter Spurious Emissions for Single Carrier

4.1.2.6.1.1 Definition

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions unless otherwise stated.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

4.1.2.6.1.2 Limits

4.1.2.6.1.2.1 General spurious emissions

This clause specifies the requirements for the specified NR band for Transmitter Spurious emissions requirement with frequency range as indicated in Table 4.1.2.6.1.2.1-1.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than F_{OOB} (MHz) in Table 4.1.2.6.1.2.1-0 from the edge of the channel bandwidth. The spurious emission limits in Table 4.1.2.6.1.2.1-1 apply for all transmitter band configurations (N_{RB}) and channel bandwidths.

The measured average power of spurious emission shall not exceed the described value in Table 4.1.2.6.1.2.1-1.

Table 4.1.2.6.1.2.1-0: Boundary between NR out of band and general spurious emission domain

Channel bandwidth	OOB boundary F _{OOB} (MHz)
BW _{Channel}	BW _{Channel} + 5

Table 4.1.2.6.1.2.1-1: General spurious emissions requirements

Frequency Range	Maximum Level	Measurement bandwidth	Note
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz	
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz	
30 MHz ≤ f < 1 000 MHz	-36 dBm	100 kHz	
1 GHz ≤ f < 12,75 GHz	-30 dBm	1 MHz	4
	-25 dBm	1 MHz	3
12,75 GHz ≤ f < 5 th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	1
12,75 GHz < f < 26 GHz	-30 dBm	1 MHz	2

NOTE 1: Applies for Band for which the upper frequency edge of the UL Band is greater than 2,55 GHz and less than or equal to 5,2 GHz.

NOTE 2: Applies for Band that the upper frequency edge of the UL Band more than 5,2 GHz.

NOTE 3: Applies for Band n41, CA configurations including Band n41, and EN-DC configurations that include n41 specified in clause 5.2B of ETSI TS 138 101-3 [8] when NS_04 is signalled.

NOTE 4: Does not apply for Band n41, CA configurations including Band n41, and EN-DC configurations that include n41 specified in clause 5.2B of ETSI TS 138 101-3 [8] when NS_04 is signalled.

4.1.2.6.1.2.2 Spurious emission for UE co-existence

This clause specifies the requirements for the specified NR band for coexistence with protected bands as indicated in Table 4.1.2.6.1.2.2-1.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than F_{OOB} (MHz) in Table 4.1.2.6.1.2.1-0 from the edge of the channel bandwidth. The spurious emission limits in Table 4.1.2.6.1.2.2-1 apply for all transmitter band configurations (N_{RB}) and channel bandwidths.

The measured average power of spurious emission shall not exceed the described value in Table 4.1.2.6.1.2.2-1.

Table 4.1.2.6.1.2.2-1: Requirements for spurious emissions for UE co-existence

		purious emission for UE co-existence					
NR Band	Protected band	Frequenc	y raı	nge (MHz)	Maximum Level (dBm)	MBW (MHz)	Note
n1, n84	E-UTRA Band 1, 7, 8, 20, 22, 28, 31, 32, 38, 40, 41, 42, 43, 50, 51, 65, 67, 68, 69, 75, 76, NR Band n78	FDL_low	-	FDL_high	-50	1	
	NR Band n77	FDL_low	-	FDL_high	-50	1	2
	E-UTRA Band 3, 34	FDL_low	-	FDL_high	-50	1	15
	Frequency range	1 880	-	1 895	-40	1	15, 27
	Frequency range	1 895	-	1 915	-15,5	5	15, 26, 27
	Frequency range	1 915	-	1 920	+1,6	5	15, 26, 27
n3, n80	E-UTRA Band 1, 7, 8, 20, 28, 31, 32, 33, 34, 38, 40, 41, 43, 50, 51, 65, 67, 68, 69, 75, 76.	FDL_low	-	FDL_high	-50	1	10, 20, 21
	E-UTRA Band 3	FDL_low	-	FDL_high	-50	1	15
	E-UTRA Band 22, 42, NR Band n77, n78	FDL_low	-	FDL_high	-50	1	2
	Frequency range	1 884,5	-	1 915,7	-41	0,3	8
n7	E-UTRA Band 1, 3, 7, 8, 20, 22, 28, 31, 32, 33, 34, 40, 42, 43, 50, 51, 65, 67, 68, 75, 76 NR Band n77, n78	FDL_low	-	FDL_high	-50	1	
	Frequency range	2 570	-	2 575	+1,6	5	15, 21, 26
	Frequency range	2 575	-	2 595	-15,5	5	15, 21, 26
	Frequency range	2 595	-	2 620	-40	1	15, 21
n8, n81	E-UTRA Band 1, 20, 28, 31, 32, 33, 34, 38, 40, 50, 51, 65, 67, 68, 69, 75, 76	FDL_low	-	FDL_high	-50	1	
	E-UTRA band 3, 7, 22, 41, 42, 43, NR Band n77, n78	FDL_low	-	FDL_high	-50	1	2
	E-UTRA 8	FDL_low	-	FDL_high	-50	1	15
	Frequency range	1 884,5	-	1 915,7	-41	0,3	8
n20, n82	E-UTRA Band 1, 3, 7, 8, 22, 31, 32, 33, 34, 40, 43, 50, 51, 65, 67, 68, 75, 76	FDL_low	-	FDL_high	-50	1	
	E-UTRA Band 20	FDL_low	-	FDL_high	-50	1	15
	E-UTRA Band 38, 42, 69, NR Band n77, n78	FDL_low	-	FDL_high	-50	1	2
	Frequency range	758	-	788	-50	1	
n28, n83	E-UTRA Band 1, 22, 32, 42, 43, 50, 51, 65, 75, 76, NR Band n77, n78	FDL_low	-	FDL_high	-50	1	2
	E-UTRA Band 1	FDL_low	-	FDL_high	-50	1	19, 25
	E-UTRA Band 3, 7, 8, 20, 31, 34, 38, 40, 41	FDL_low	-	FDL_high	-50	1	
	Frequency range	470	-	694	-42	8	15, 35
	Frequency range	470	-	710	-26,2	6	34
	Frequency range	662	-	694	-26,2	6	15
	Frequency range	758	-	773	-32	1	15
	Frequency range	773	-	803	-50	1	
	Frequency range	1 884,5	-	1 915,7	-41	0,3	8, 19
n38	E-UTRA Band 1, 3, 8, 20, 22, 28, 31, 32, 33, 34, 40, 42, 43, 50, 51, 65, 67, 68, 75, 76	FDL_low	-	FDL_high	-50	1	
	Frequency range	2 620	-	2 645	-15,5	5	15, 22, 26
	Frequency range	2 645	-	2 690	-40	1	15, 22

	Spurious emission for UE co-existence						
NR Band	Protected band	Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	Note
n40	E-UTRA Band 1, 3, 5, 7, 8, 20, 22, 28, 31, 32, 33, 34, 38, 41, 42, 43, 50, 51, 65, 67, 68, 69, 75, 76 NR Band n77, n78	FDL_low	-	FDL_high	-50	1	
n41	E-UTRA Band 1, 3, 8, 25, 28, 34, 42, 50, 51, 65, NR Band n77, n78	FDL_low	-	FDL_high	-50	1	
	Frequency range	1 884,5		1 915,7	-41	0,3	8
n50	E-UTRA Band 1, 3, 7, 8, 20, 28, 31, 34, 38, 40, 41, 42, 43, 65, 67, 68	FDL_low	-	FDL_high	-50	1	
n51	E-UTRA Band 1, 3, 7, 8, 20, 28, 31, 34, 38, 40, 41, 42, 43, 65, 67, 68	FDL_low	-	FDL_high	-50	1	
n65	E-UTRA Band 1, 3, 7, 8, 20, 22, 28, 31, 32, 38, 40, 41, 42, 43, 50, 51, 65, 68, 69, 75, 76, NR Band n78, n79	FDL_low	-	FDL_high	-50	1	
	NR Band n77	FDL_low	-	FDL_high	-50	1	2
	E-UTRA Band 34	FDL_low	-	FDL_high	-50	1	43
	Frequency range	1 900	-	1 915	-15,5	5	15, 26, 27a
	Frequency range	1 915	-	1 920	+1,6	5	15, 26, 27a
n77	E-UTRA Band 1, 3, 7, 8, 20, 28, 34, 39, 40, 41, 65	FDL_low	-	FDL_high	-50	1	
	Frequency range	1 884,5	-	1 915,7	-41	0,3	8
n78	E-UTRA Band 1, 3, 7, 8, 20, 28, 32, 34, 40, 41, 65, 75, 76	FDL_low	-	FDL_high	-50	1	
	Frequency range	1 884,5	-	1 915,7	-41	0,3	8

- NOTE 1: FDL_low and FDL_high refer to each frequency band specified in Table 1.1-1 for NR band, Table 5.5-1 in ETSI TS 136 521-1 [11] for E-UTRA band.
- NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 4.1.2.6.1.2.1-1 are permitted for each assigned NR carrier used in the measurement due to 2nd, 3rd, 4th or 5th harmonic spurious emissions. Due to the spreading of the harmonic emission, the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2 MHz + N x LCRB x RBsize kHz), where N is 2, 3, 4, 5 for the 2nd, 3rd, 4th or 5th harmonic respectively. The exception is allowed if the Measurement Bandwidth (MBW) totally or partially overlaps the overall exception interval.
- NOTE 3: 15 kHz SCS is assumed when RB is mentioned in the note when channel bandwidth is less than or equal to 50 MHz, lowest SCS is assumed when channel bandwidth is larger than 50 MHz. The transmission bandwidth in terms of RB position and range is not limited to 15 kHz SCS and shall scale with SCS accordingly.

NOTES 4 to 7: N/A.

NOTE 8: Applicable when co-existence with PHS system operating in 1 884,5 - 1 915,7 MHz.

NOTES 9 to 14: N/A.

NOTE 15: These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 4.1.2.6.1.2.1-0 from the edge of the channel bandwidth.

NOTES 16 to 18: N/A.

NOTE 19: Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.

NOTE 20: N/A.

- NOTE 21: This requirement is applicable for any channel bandwidths within the range 2 500 MHz 2 570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2 560,5 MHz 2 562,5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2 552 MHz 2 560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 22: This requirement is applicable for power class 3 UE for any channel bandwidths within the range 2 570 MHz 2 615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2 605,5 MHz 2 607,5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2 597 MHz 2 605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For power class 2 UE for any channel bandwidths within the range 2 570 MHz 2 615 MHz, NS_44 shall apply. For power class 2 or 3 UE for carriers with channel bandwidth overlapping the frequency range 2 615 MHz 2 620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max.

NOTE 23: N/A.

Spurious emission for UE co-existence						
N	R Band	Protected band	Frequency range (MHz)	Maximum Level (dBm)	MBW (MHz)	Note

- NOTE 24: As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 2nd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.3.1-1 of ETSI TS 138 101-1 [6]) for which the 2nd harmonic totally or partially overlaps the Measurement Bandwidth (MBW).
- NOTE 25: As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.3.1-1 of ETSI TS 138 101-1 [6])) for which the 3rd harmonic totally or partially overlaps the Measurement Bandwidth (MBW).
- NOTE 26: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.
- NOTE 27: This requirement is applicable for any channel bandwidths within the range 1 920 MHz 1 980 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1 927,5 MHz 1 929,5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1 930 MHz 1 938 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 27a: This requirement is applicable for channel bandwidths up to 20 MHz within the range 1 920 MHz 1 980 MHz with the following restriction: for carriers of 15 MHz bandwidth when the carrier centre frequency is within the range 1 927,5 MHz 1 929,5 MHz and for carriers of 20 MHz bandwidth when the carrier centre frequency is within the range 1 930 MHz 1 938 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.

NOTES 28 to 33: N/A.

- NOTE 34: This requirement is applicable for 5 and 10 MHz NR channel bandwidth allocated within 718 MHz 728 MHz. For carriers of 10 MHz bandwidth, this requirement applies for an uplink transmission bandwidth less than or equal to 30 RB with RBstart > 1 and RBstart < 48.
- NOTE 35: This requirement is applicable in the case of a 10 MHz NR carrier confined within 703 MHz and 733 MHz, otherwise the requirement of -25 dBm with a measurement bandwidth of 8 MHz applies.

NOTES 36 to 42: N/A.

NOTE 43: This requirement is applicable for NR channel bandwidth allocated within 1 920 MHz - 1 980 MHz.

NOTE: To simplify Table 4.1.2.6.1.2.2-1, E-UTRA band numbers are listed for bands which are specified only for E-UTRA operation or both E-UTRA and NR operation in ETSI TS 138 101-1 [6] or ETSI TS 136 101 [14]. NR band numbers are listed for bands which are specified only for NR operation.

4.1.2.6.1.2.3 Additional spurious emissions

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

This clause specifies the requirements for the specified NR band for an additional spectrum emission requirement with protected bands for different NS values.

When "NS_04" is indicated in the cell (applicable to band n41):

The measured UE mean power in the channel bandwidth shall fulfil requirements in Table 6.2.3.5-2 of ETSI TS 138 521-1 [1] for power class 2 UE, and Table 6.2.3.5-3 of ETSI TS 138 521-1 [1] for power class 3 UE.

The power of any UE emission shall not exceed the levels specified in Table 4.1.2.6.1.2.3-1. This requirement also applies to the frequency ranges that are less than F_{OOB} (MHz) in Table 4.1.2.6.1.2.1-0 from the edge of the channel bandwidth.

Table 4.1.2.6.1.2.3-1: Additional requirements for "NS_04"

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 10, 15, 20, 40, 50, 60, 80, 90, 100	Measurement bandwidth
2 495 ≤ f < 2 496	-13	1 % of Channel BW
2 490,5 ≤ f < 2 495	-13	1 MHz
0,009 < f < 2 490,5	-25	1 MHz

When "NS_17" is indicated in the cell (applicable to bands n28, n83):

The power of any UE emission shall not exceed the levels specified in Table 4.1.2.6.1.2.3-2. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 4.1.2.6.1.2.1-0 from the edge of the channel bandwidth.

Table 4.1.2.6.1.2.3-2: Additional requirements for "NS_17"

Frequency band (MHz)		Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth
		5, 10 MHz	
470 ≤ f	[:] ≤ 710	-26,2	6 MHz
NOTE: Applicable when the assigned E-UTRA carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.			

When "NS_18" is indicated in the cell (applicable to bands n28, n83):

The measured UE mean power in the channel bandwidth shall fulfil requirements in Table 6.2.3.5-8 of ETSI TS 138 521-1 [1] for power class 3 UE.

The power of any UE emission shall not exceed the levels specified in Table 4.1.2.6.1.2.3-3. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 4.1.2.6.1.2.1-0 from the edge of the channel bandwidth.

Table 4.1.2.6.1.2.3-3: Additional requirements for "NS_18"

Frequency range	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth
(MHz)	5, 10, 15, 20, 30 MHz	
692 - 698	-26,2	6 MHz

When "NS_05" or "NS_05U" is indicated in the cell (applicable to bands n1, n65, n84):

The measured UE mean power in the channel bandwidth shall fulfil requirements in Table 6.2.3.5-6 of ETSI TS 138 521-1 [1] for power class 3 UE.

The power of any UE emission shall not exceed the levels specified in Table 4.1.2.6.1.2.3-4. This requirement also applies to the frequency ranges that are less than F_{OOB} (MHz) in Table 4.1.2.6.1.2.1-0 from the edge of the channel bandwidth.

Table 4.1.2.6.1.2.3-4: Additional requirements for "NS_05" and "NS_05U"

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm)	Measurement bandwidth
	5, 10, 15, 20	
1 884,5 ≤ f ≤ 1 915,7	-41	300 kHz

When "NS_43" or "NS_43U" is indicated in the cell (applicable to bands n8, n81):

The measured UE mean power in the channel bandwidth shall fulfil requirements in Table 6.2.3.5-10 of ETSI TS 138 521-1 [1] for power class 3 UE.

The power of any UE emission shall not exceed the levels specified in Table 4.1.2.6.1.2.3-5. This requirement also applies to the frequency ranges that are less than F_{OOB} (MHz) in Table 4.1.2.6.1.2.1-0 from the edge of the channel bandwidth.

Table 4.1.2.6.1.2.3-5: Additional requirement for "NS_43" and "NS_43U"

Freque rang	•	Channel bandwidth (MHz) / Spectrum emission limit (dBm)	Measurement bandwidth
(MH	z)	5, 10, 15	
860 ≤ f	≥ 890	-40	1 MHz
NOTE: Applicable for 5 MHz and 15 MHz channel BW confined between 9		00 MHz and 915 MHz and	
	for 10 MHz channel BW confined between 905 MHz and 915 MHz		

When "NS_41" is indicated in the cell (applicable to band n50):

The measured UE mean power in the channel bandwidth shall fulfil requirements in Table 6.2.3.5-20 of ETSI TS 138 521-1 [1] for power class 3 UE.

The power of any UE emission shall not exceed the levels specified in Table 4.1.2.6.1.2.3-6. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 4.1.2.6.1.2.1-0 from the edge of the channel bandwidth.

Table 4.1.2.6.1.2.3-6: Additional requirements for NR channels assigned within 1 432 MHz - 1 517 MHz for "NS_41"

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 5, 10, 15, 20, 40, 50, 60	Measurement bandwidth	
1 400 ≤ f ≤ 1 427	-32	27 MHz	
NOTE: This requirement shall be verified with UE transmission power of 15 dBm.			

When "NS_42" is indicated in the cell (applicable to band n50):

The measured UE mean power in the channel bandwidth shall fulfil requirements in Table 6.2.3.5-21 of ETSI TS 138 521-1 [1] for power class 3 UE.

The power of any UE emission shall not exceed the levels specified in Table 4.1.2.6.1.2.3-7. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 4.1.2.6.1.2.1-0 from the edge of the channel bandwidth.

Table 4.1.2.6.1.2.3-7: Additional requirements for NR channels assigned within 1 432-1 517 MHz for "NS_42"

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 5, 10, 15, 20, 40, 50, 60	Measurement bandwidth
1 518 ≤ f ≤ 1 520	-0,8	1 MHz
1 520 < f ≤ 1 559	-30	1 MHz

When "NS_24" is indicated in the cell (applicable to band n65):

The measured UE mean power in the channel bandwidth shall fulfil requirements in Table 6.2.3.5-17 of ETSI TS 138 521-1 [1] for power class 3 UE.

The power of any UE emission shall not exceed the levels specified in Table 4.1.2.6.1.2.3-8. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 4.1.2.6.1.2.1-0 from the edge of the channel bandwidth.

Table 4.1.2.6.1.2.3-8: Additional requirements for "NS_24"

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth
	5 MHz, 10 MHz, 15 MHz, 20 MHz	
2 010 ≤ f ≤ 2 025	-50	1 MHz
the upper edge	nt applies at a frequency offset equal or larger of the channel bandwidth, whenever these freed frequency band.	

When "NS_47" is indicated in the cell (applicable to band n41):

The measured UE mean power in the channel bandwidth shall fulfil requirements in Table 6.2.3.5-22 of ETSI TS 138 521-1 [1] for power class 3 UE.

The measured UE mean power in the channel bandwidth shall fulfil requirements in Table 6.2.3.5-23 of ETSI TS 138 521-1 [1] for power class 2 UE.

The power of any UE emission shall not exceed the levels specified in Table 4.1.2.6.1.2.3-9. This requirement applies when the NR carrier is within 2 545 MHz - 2 575 MHz. In the current release the requirement in Table 4.1.2.6.1.2.3-9 applies for 30 MHz channel bandwidth.

Table 4.1.2.6.1.2.3-9: Additional requirement for "NS_47"

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 30	Measurement bandwidth
2 530 ≤ f ≤ 2 535	-25	1 MHz
2 505 ≤ f ≤ 2 530	-30	1 MHz

When "NS_48" is indicated in the cell (applicable to bands n1, n84):

The measured UE mean power in the channel bandwidth shall fulfil requirements in Table 6.2.3.5-24 of ETSI TS 138 521-1 [1] for power class 3 UE.

The power of any UE emission shall not exceed the levels specified in Table 4.1.2.6.1.2.3-10. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 4.1.2.6.1.2.1-0 from the edge of the channel bandwidth. In the present release the requirement in Table 4.1.2.6.1.2.3-10 is applicable for 25, 30, 40 and 50 MHz channel bandwidths.

Table 4.1.2.6.1.2.3-10: Additional requirements for "NS_48"

Protected band	Frequenc	y ra	nge (MHz)	Maximum Level (dBm)	MBW (MHz)				
E-UTRA band 34	FDL low		FDL high	-50	1				
NR band n34	FDL_IOW	-	FDL_IIIgII	-50	l				
Frequency range				-15.5	5				
(note)	1 900	-	1 915	-15,5	3				
Frequency range				.16	E				
(note) 1 915 - 1 920 +1,6									
NOTE: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s)									
operating in the protected operating band.									

When "NS_49" is indicated in the cell (applicable to bands n1, n84):

The measured UE mean power in the channel bandwidth shall fulfil requirements in Table 6.2.3.5-33 of ETSI TS 138 521-1 [1] for power class 3 UE.

The power of any UE emission shall not exceed the levels specified in Table 4.1.2.6.1.2.3-11. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 4.1.2.6.1.2.1-0 from the edge of the channel bandwidth. In the present release the requirement in Table 4.1.2.6.1.2.3-11 is applicable for 25, 30, 40 and 50 MHz channel bandwidths.

Table 4.1.2.6.1.2.3-11: Additional requirements for "NS_49"

Protected band	Frequenc	y ra	nge (MHz)	Maximum Level (dBm)	MBW (MHz)						
E-UTRA band 34 NR band n34	FDL_low	-	FDL_high	-50	1						
Frequency range	1 880	-	1 895	-40	1						
Frequency range (note)	1 895		1 915	-15,5	5						
Frequency range (note)	1 915	-	1 920	1,6	5						
NOTE: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s)											
operating in t	operating in the protected operating band.										

When "NS_44" is indicated in the cell (applicable to band n38):

The measured UE mean power in the channel bandwidth shall fulfil requirements in Table 6.2.3.5-31 of ETSI TS 138 521-1 [1] for power class 3 UE.

The power of any UE emission shall not exceed the levels specified in Table 4.1.2.6.1.2.3-12. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 4.1.2.6.1.2.1-0 from the edge of the channel bandwidth. In the present release the requirement in Table 4.1.2.6.1.2.3-12 is applicable for 25, 30 and 40 MHz channel bandwidths.

Table 4.1.2.6.1.2.3-12: Additional requirements for "NS_44"

Protected band	Frequenc	y ran	ge (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE
Frequency range	2 620	-	2 645	-15,5	5	1, 2
Frequency range	2 645	-	2 690	-40	1	1

NOTE 1: This requirement is applicable for carriers confined in 2 570 MHz - 2 615 MHz.

NOTE 2: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.

4.1.2.6.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.1.3.5.1 of the present document.

4.1.2.6.2 Void

4.1.2.6.3 Void

4.1.2.6.4 Void

4.1.2.6.5 Transmitter Spurious Emissions for UL-MIMO

4.1.2.6.5.1 Definition

For UE supporting UL MIMO, the requirements for Spurious emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products are specified at each transmit antenna connector.

If UE is configured for transmission on a single-antenna port, the requirements in clause 4.1.2.6.1 apply.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

4.1.2.6.5.2 Limits

For UEs with two transmit antenna connectors in a closed-loop spatial multiplexing scheme, the requirements specified in clause 4.1.2.6.1 apply. The requirements shall be met with the UL MIMO configurations described in clause 4.1.2.2.5.

4.1.2.6.5.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.1.3.5.5 of the present document.

4.1.2.7 Receiver Reference Sensitivity Level

4.1.2.7.1 Receiver Reference Sensitivity Level for single carrier

4.1.2.7.1.1 Definition

The reference sensitivity power level REFSENS is the minimum mean power applied to each one of the UE antenna ports for all UE categories, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

In later subclauses of clause 4 where the value of REFSENS is used as a reference to set the corresponding requirement:

- in all bands, the UE shall be verified against those requirements by applying the REFSENS value in Table 4.1.2.7.1.2-1 with 2 Rx antenna ports tested;
- for bands where the UE is required to be equipped with 4 Rx antenna ports, the UE shall additionally be verified against those requirements by applying the resulting REFSENS value derived from the requirement in Table 4.1.2.7.1.2-2 with 4 Rx antenna ports tested.

4.1.2.7.1.2 Limits

The throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in ETSI TS 138 101-1 [6], clauses A.2.2.2, A.2.3.2, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in ETSI TS 138 101-1 [6], clauses A.5.1.1/A.5.2.1) with parameters specified in Table 4.1.2.7.1.2-1 and Table 4.1.2.7.1.2-2.

Table 4.1.2.7.1.2-1: Two antenna port reference sensitivity

				Operati	ng band	/ SCS / C	hannel ba	andwidth	ı / Duple	x-mode				
Operating Band	SCS kHz	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	25 MHz (dBm)	30 MHz (dBm)	40 MHz (dBm)	50 MHz (dBm)	60 MHz (dBm)	80 MHz (dBm)	90 MHz (dBm)	100 MHz (dBm)	Duplex Mode
	15	-99,3	-96,1	-94,3	-93,1	-92,0	-91,2	-89,9	-88,9	, ,		, ,	, ,	
n1	30	,	-96,4	-94,4	-93,3	-92,1	-91,3	-90,0	-89,0					FDD
	60		-96,8	-94,7	-93,5	-92,3	-91,4	-90,2	-89,0					Ī
	15	-96,3	-93,1	-91,3	-90,1	-89	-88,2							
n3	30		-93,4	-91,4	-90,3	-89,1	-88,3							FDD
	60		-93,8	-91,7	-90,5	-89,3	-88,4							
7	15	-97,3	-94,1	-92,3	-91,1									
n7	30		-94,4	-92,4	-91,3									FDD
(note 1)	60		-94,8	-92,7	-91,5									
	15	-96,3	-93,1	-90,7	-85,1									
n8	30		-93,4	-91	-86,5									FDD
	60													
	15	-96,3	-93,1	-90,3	-89,1									
n20	30		-93,4	-90,4	-89,3									FDD
	60													
	15	-97,8	-94,8	-92,8	-90,1									
n28	30		-94,9	-92,9	-90,3									FDD
	60													
n38	15	-99,3	-96,1	-94,3	-93,0	-92,0	-90,5	-89,4						
(note 1)	30		-96,4	-94,4	-93,1	-92,1	-90,6	-89,4						TDD
(note i)	60		-96,8	-94,7	-93,4	-92,3	-90,8	-89,6						
	15	-99,3	-96,1	-94,3	-93,0	-92,0	-91,2	-89,9	-89,0					
n40	30		-96,4	-94,4	-93,1	-92,1	-91,3	-89,9	-89,0	-88,1	-86,8			TDD
	60		-96,8	-94,7	-93,4	-92,3	-91,4	-90,1	-89,1	-88,2	-86,9			
44	15		-93,9	-92,1	-90,8		-88,3	-87,7	-86,8					
n41 (note 1)	30		-94,4	-92,4	-91,1		-89,6	-87,9	-87,0	-86,1	-84,8	-84,3	-83,8	TDD
(note 1)	60		-94,8	-92,7	-91,4		-88,8	-88,1	-87,1	-86,2	-84,9	-84,4	-83,9	
	15	-99,3	-96,1	-94,3	-93,0			-89,9	-89,0					
n50	30		-96,4	-94,4	-93,1			-89,9	-89,0	-88,1	-86,8			TDD
	60		-96,8	-94,7	-93,4			-90,1	-89,1	-88,2	-86,9			
	15	-99,3								·				
n51	30													TDD
	60							1				1	1	
	15	-98,8	-95,6	-93,8	-92,6							1	1	
n65	30	,-	-95,9	-93,9	-92,8							1	1	FDD
	60		-96,3	-94,2	-93						1	1	†	
			,-							•		1	1	

	Operating band / SCS / Channel bandwidth / Duplex-mode													
Operating Band	SCS kHz	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	25 MHz (dBm)	30 MHz (dBm)	40 MHz (dBm)	50 MHz (dBm)	60 MHz (dBm)	80 MHz (dBm)	90 MHz (dBm)	100 MHz (dBm)	Duplex Mode
77	15		-94,1	-92,3	-91,0		•	-87,9	-87,0	•				
n77	30		-94,6	-92,6	-91,3			-88,1	-87,2	-86,3	-85,0	-84,5	-84,0	TDD
(notes 1&4)	60	-	-95,0	-92,9	-91,6			-88,3	-87,3	-86,4	-85,1	-84,6	-84,1	
70	15		-94,6	-92,8	-91,5			-88,4	-87,5					
n78	30		-95,1	-93,1	-91,8			-88,6	-87,7	-86,8	-85,5	-85,0	-84,5	TDD
(note 1)	60		-95,5	-93,4	-92,1			-88,8	-87,8	-86,9	-85,6	-85,1	-84,6	

NOTE 1: Four Rx antenna ports shall be the baseline for this operating band except for two Rx vehicular UE.

NOTE 2: The transmitter shall be set to P_{UMAX} as defined in clause 6.2.4 of ETSI TS 138 101-1 [6].

NOTE 3: The requirement is modified by -0,5 dB when the assigned NR channel bandwidth is confined within 1 475,9 MHz - 1 510,9 MHz.

NOTE 4: The requirement is modified by -0,5 dB when the assigned UE channel bandwidth is confined within 3 300 MHz - 3 800 MHz.

For UE(s) equipped with 4 Rx antenna ports, reference sensitivity for 2Rx antenna ports in Table 4.1.2.7.1.2-1 shall be modified by the amount given in $\Delta R_{IB,4R}$ in Table 4.1.2.7.1.2-2 for the applicable operating bands.

Table 4.1.2.7.1.2-2: Four antenna port reference sensitivity allowance ΔR_{IB,4R}

Operating band	ΔR _{IB,4R} (dB)
n1, n3, n40, n7, n38, n41	-2,7
n77, n78	-2,2

The reference sensitivity (REFSENS) requirement specified in Table 4.1.2.7.1.2-1 and Table 4.1.2.7.1.2-2 shall be met with uplink transmission bandwidth less than or equal to that specified in Table 4.1.2.7.1.2-3.

Table 4.1.2.7.1.2-3: Uplink configuration for reference sensitivity

					band / S									
Operating	SCS	5	10	15	20	25	30	40	50	60	80	90	100	Duplex
Band	kHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	Mode
	15	25	50 ¹	75 ¹	100 ¹	128 ¹	128 ¹	128 ¹	128 ¹					
n1	30		24	36 ¹	50 ¹	64 ¹	64 ¹	64 ¹	64 ¹					FDD
	60		10 ¹	18	24	30 ¹	30 ¹	30 ¹	30 ¹					
	15	25	50 ¹	50 ¹	50 ¹	50 ¹	50 ¹							
n3	30		24	24 ¹	24 ¹	24 ¹	24 ¹							FDD
	60		10 ¹	10 ¹	10 ¹	10 ¹	10 ¹							
	15	25	50 ¹	75 ¹	75 ¹									
n7	30		24	36 ¹	36 ¹									FDD
	60		10 ¹	18	18 ¹									
	15	25	25 ¹	20 ¹	20 ¹									
n8	30		12 ¹	10 ¹	10 ¹									FDD
	60													
	15	25	20 ¹	20 ²	20 ²									
n20	30		10 ¹	10 ²	10 ²									FDD
	60													
	15	25	25 ¹	25 ¹	25 ¹									
n28	30		10 ¹	10 ¹	10 ¹									FDD
	60													
	15	25	50	75	100	128	160	216						
n38	30		24	36	50	64	75	100						TDD
	60		10	18	24	30	36	50						
	15	25	50	75	100	128	160	216	270					
n40	30		24	36	50	64	75	100	128	162	216			TDD
	60		10	18	24	30	36	50	64	75	100			Ī
	15		50	75	100		160	216	270					
n41	30		24	36	50		75	100	128	162	216	243	270	TDD
	60		10	18	24		36	50	64	75	100	120	135	
	15	25	50	75	100			216	270					
n50	30		24	36	50			100	128	162	note 3			TDD
	60		10	18	24			50	64	75	note 3			
	15	25									11010			
n51	30									1	1			TDD
	60													1
	15	25	50 ¹	75 ¹	100 ¹									
n65	30		24	36 ¹	50 ¹									FDD
	60		10 ¹	18	24					<u>† </u>				1
	15		50	75	100			216	270	<u>† </u>				
n77	30		24	36	50			100	128	162	216	243	270	TDD
,	60		10	18	24			50	64	75	100	120	135	'55
	15		50	75	100			216	270	1.5	1.00	120	100	
n78	30	1	24	36	50		1	100	128	162	216	243	270	TDD
1170	60		10	18	24			50	64	75	100	120	135	1 '00

	Operating band / SCS / Channel bandwidth / Duplex mode													
Operatin	g SCS	5	10	15	20	25	30	40	50	60	80	90	100	Duplex
Band	kHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	Mode
NOTE 1:	UL resou	rce bloc	ks shal	l be loca	ated as cl	ose as p	ossible	to the d	ownlink	operati	ng band	but con	fined w	ithin the
	transmiss	sion ban	ndwidth	configu	ration for	the chan	nel bar	dwidth	(Table 5	5.3.2-1	of ETSI T	S 138 1	01-1 [6]).
NOTE 2:	transmission bandwidth configuration for the channel bandwidth (Table 5.3.2-1 of ETSI TS 138 101-1 [6]). E 2: For Band 20; for 15 kHz SCS, in the case of 15 MHz channel bandwidth, the UL resource blocks shall be located													
	at RB _{start}	11 and	in the ca	ase of 2	20 MHz cl	nannel ba	andwidt	h, the U	L resou	rce bloc	cks shall	be loca	ted at R	B _{start} 16;
	for 30 kH	z SCS,	in the c	ase of 1	15 MHz cl	hannel ba	andwidt	h, the U	L resou	rce bloc	cks shall	be loca	ted at R	B _{start} 6
	and in the	e case c	of 20 MH	Iz chan	nel band	width, the	UL res	source b	locks s	hall be I	ocated a	t RB _{start}	8; for 6	0 kHz
	and in the case of 20 MHz channel bandwidth, the UL resource blocks shall be located at RB _{start} 8; for 60 kHz SCS, in the case of 15 MHz channel bandwidth, the UL resource blocks shall be located at RB _{start} 3 and in the													
	case of 2	0 MHz	channel	bandw	idth, the l	JL resou	rce bloc	ks shall	be loca	ated at F	RBstart 4	;		
NOTE 3:	For DL ch	hannel b	andwid	Iths that	do not h	ave symr	metric L	JL chani	nel band	dwidth,	the highe	est valid	UL	
	configura	ition with	h the lov	west du	plex dista	ince shal	l be use	ed.						

4.1.2.7.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.1.3.6 of the present document.

4.1.2.7.2 Void

4.1.2.7.3 Void

4.1.2.7.4 Void

4.1.2.7.5 Receiver Reference Sensitivity Level for UL-MIMO

For UE with two transmitter antenna connectors in a closed-loop spatial multiplexing scheme, the minimum requirements specified in clause 4.1.2.7.1 shall be met with the UL MIMO configurations described in clause 4.1.2.2.5 and the reference measurement channels as specified in ETSI TS 138 101-1 [6], clauses A.2.2 and A.2.3 for CP-OFDM waveforms shall apply. For UL MIMO, the parameter P_{UMAX} is the total transmitter power over the two transmits power over the two transmit antenna connectors.

4.1.2.8 Receiver Adjacent Channel Selectivity (ACS)

4.1.2.8.1 Receiver Adjacent Channel Selectivity (ACS) for single carrier

4.1.2.8.1.1 Definition

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive an NR signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

4.1.2.8.1.2 Limits

The UE shall fulfil the minimum requirements specified in Table 4.1.2.8.1.2-1 for NR bands with $F_{DL_high} < 2\,700$ MHz and the minimum requirements specified in Table 4.1.2.8.1.2-2. for NR bands with $F_{DL_low} \ge 3\,300$ MHz and $F_{UL_low} \ge 3\,300$ MHz. These requirements apply for all values of an adjacent channel interferer up to -25 dBm and for any SCS specified for the channel bandwidth of the wanted signal. However, it is not possible to directly measure the ACS; instead, the lower and upper range of test parameters are chosen as in Table 4.1.2.8.1.2-3 and Table 4.1.2.8.1.2-4 for verification of the requirements specified in Table 4.1.2.8.1.2-1, and as in Table 4.1.2.8.1.2-5 and Table 4.1.2.8.1.2-6 for verification of the requirements specified in Table 4.1.2.8.1.2-2. For these test parameters, the throughput shall be $\ge 95\,\%$ of the maximum throughput of the reference measurement channels as specified in ETSI TS 138 101-1 [6], clauses A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in ETSI TS 138 101-1 [6], clauses A.5.1.1/A.5.2.1). For operating bands with an unpaired DL part (as noted in Table 1.1-1), the requirements only apply for carriers assigned in the paired part.

Table 4.1.2.8.1.2-1: ACS for NR bands with F_{DL_high} < 2 700 MHz and F_{UL_high} < 2 700 MHz

RX parameter	Units		Channel bandwidth									
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz						
ACS	dB	33	33	30	27	26						
RX parameter	Units		Cha	nnel bandw	idth							
		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz						
ACS	dB	25,5	24	23	22,5	21						
RX parameter	Units		Cha	nnel bandw	idth							
		90 MHz	100 MHz									
ACS	dB	20,5	20									

Table 4.1.2.8.1.2-2: ACS for NR bands with $F_{DL_low} \ge 3~300~MHz$ and $F_{UL_low} \ge 3~300~MHz$

RX parameter	Units		Channel bandwidth									
		10 MHz	10 MHz 15 MHz 20 MHz 40 MHz 50 MHz									
ACS	dB	33	33	33	33	33						
RX parameter	Units		Cha	nnel bandwi	idth							
		60 MHz	80 MHz	90 MHz	100 MHz							
ACS	dB	33	33	33	33							

Table 4.1.2.8.1.2-3: Test parameters for NR bands with F_{DL_high} < 2 700 MHz and F_{UL_high} < 2 700 MHz, case 1

RX parameter	Units		Cł	nannel bandwid	th				
-		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz			
Power in transmission bandwidth configuration	dBm		R	EFSENS + 14 d	В				
P _{interferer}	dBm	REFSENS + 45,5 dB	REFSENS + 45,5 dB	REFSENS + 42,5 dB	REFSENS + 39,5 dB	REFSENS + 38,5 dB			
BWinterferer	MHz	5	5	5	5	5			
Finterferer (offset)	MHz	5 / -5	7,5 / -7,5	10 / -10	12,5 / -12,5	15 / -15			
RX parameter	Units			annel bandwid		1			
•		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz			
Power in transmission bandwidth configuration	dBm		R	EFSENS + 14 d	В				
Pinterferer	dBm	REFSENS + 38 dB	REFSENS + 36,5 dB	REFSENS + 35,5 dB	REFSENS + 35 dB	REFSENS + 33,5 dB			
BW _{interferer}	MHz	5	5	5	5	5			
Finterferer (offset)	MHz	17,5 / -17,5	22,5 / -22,5	27,5 / -27,5	32,5 / -32,5	42,5 / -42,5			
RX parameter	Units		Cł	nannel bandwid	th				
		90 MHz	100 MHz						
Power in transmission bandwidth configuration	dBm	REFSENS	S + 14 dB						
Pinterferer	dBm	REFSENS + 33 dB	REFSENS + 32,5 dB						
BW _{interferer}	MHz	5	5						
Finterferer (offset)	MHz	47,5 / -47,5	52,5 / -52,5						

RX para	meter	Units		Channel bandwidth 5 MHz						
			5 MHz	25 MHz						
NOTE 1:	IOTE 1: The transmitter shall be set to 4 dB below PcMAX_L,f,c at the minimum UL configuration specified in									
	Table 4.1.2.7.1.2-3 with P _{CMAX_L,f,c} defined in clause 6.2.4 of ETSI TS 138 101-1 [6].									
NOTE 2:	The abs	solute value	alue of the interferer offset Finterferer (offset) shall be further adjusted to							
	$([F_{interf}])$	$_{\rm erer}$ $ /SCS] +$	0,5)SCS MHz wi	th SCS the sub-	carrier spacing o	f the wanted sign	nal in MHz.			
	The inte	erferer is an	NR signal with 1	15 kHz SCS.						
NOTE 3:	The inte	erferer cons	ists of the NR int	terferer RMC spe	ecified in ETSITS	S 138 101-1 [6],				
	clauses	clauses A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the								
	DL-sign	al as descri	bed in ETSI TS	138 101-1 [6], cl	auses A.5.1.1/A.	5.2.1.				

Table 4.1.2.8.1.2-4: Test parameters for NR bands with F_{DL_high} < 2 700 MHz and F_{UL_high} < 2 700 MHz, case 2

RX parameter	Units		CI	nannel bandwid	dth			
•		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz -49,5 5 15 / -15 80 MHz -44,5		
Power in	dBm	-56,5	-56,5	-53,5	-50,5	-49,5		
transmission		·	,		,	,		
bandwidth								
configuration								
Pinterferer	dBm			-25				
BW _{interferer}	MHz	5	5	5	5	5		
Finterferer (offset)	MHz	5	7,5	10	12,5	15		
		/	/	/		/		
		-5	-7,5	-10	-12,5	-15		
RX parameter	Units			nannel bandwid				
		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz		
Power in	dBm	-49	-47	-46,5	-46	-44,5		
transmission								
bandwidth								
configuration								
Pinterferer	dBm			-25				
BWinterferer	MHz	5	5	5	5	5		
Finterferer (offset)	MHz	17,5	22,5	27,5	32,5	42,5		
		/	/	/	/	/		
		-17,5	-22,5	-27,5	-32,5	-42,5		
RX parameter	Units		CI	nannel bandwid	dth			
		90 MHz	100 MHz					
Power in	dBm							
transmission		-44	12.5					
bandwidth		-44	-43,5					
configuration								
Pinterferer	dBm	-2	25					
BW _{interferer}	MHz	5	5					
Finterferer (offset)	MHz	47,5	52,5					
		/	/ 50.5					
		-47,5	-52,5					

- NOTE 1: The transmitter shall be set to 24 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 4.1.2.7.1.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4 of ETSI TS 138 101-1 [6].
- NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $([|F_{interferer}|/SCS] + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with 15 kHz SCS.
- NOTE 3: The interferer consists of the RMC specified in ETSI TS 138 101-1 [6], clauses A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in ETSI TS 138 101-1 [6], clauses A.5.1.1/A.5.2.1.

Table 4.1.2.8.1.2-5: Test parameters for NR bands with $F_{DL_low} \ge 3$ 300 MHz and $F_{UL_low} \ge 3$ 300 MHz, case 1

RX parameter	Units		Ch	nannel bandwid	th					
-		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz				
Power in transmission bandwidth	dBm		REFSENS + 14 dB							
configuration										
Pinterferer	dBm		RE	FSENS + 45,5 (dB					
BWinterferer	MHz	10	15	20	40	50				
Finterferer (offset)	MHz	10	15	20	40	50				
		/	/	/	/	/				
		-10	-15	-20	-40	-50				
RX parameter	Units	Channel bandwidth								
		60 MHz	80 MHz	90 MHz	100 MHz					
Power in transmission bandwidth configuration	dBm		REFSENS	S + 14 dB						
Pinterferer	dBm	REFSENS +	REFSENS +	REFSENS +	REFSENS +					
		45,5 dB	45,5 dB	45,5 dB	45,5 dB					
BWinterferer	MHz	60	80	90	100	•				
Finterferer (offset)	MHz	60	80	90	100					
, ,		/	/	/	/					
		-60	-80	-90	-100					

- NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 4.1.2.7.1.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4 of ETSI TS 138 101-1 [6].
- NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $([|F_{interferer}|/SCS] + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.
- NOTE 3: The interferer consists of the RMC specified in ETSI TS 138 101-1 [6], clauses A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in ETSI TS 138 101-1 [6], clauses A.5.1.1/A.5.2.1.

Table 4.1.2.8.1.2-6: Test parameters for NR bands with $F_{DL_low} \ge 3$ 300 MHz and $F_{UL_low} \ge 3$ 300 MHz, case 2

RX parameter	Units		Ch	annel bandwid	th	
		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz
Power in transmission bandwidth configuration	dBm			-56,5		
Pinterferer	dBm		-25			
BWinterferer	MHz	10	15	20	40	50
Finterferer (offset)	MHz	10 / -10	15 / -15	20 / -20	40 / -40	50 / -50
RX parameter	Units		Ch	annel bandwid	th	•
-		60 MHz	80 MHz	90 MHz	100 MHz	
Power in transmission bandwidth configuration	dBm		-56	3,5		
Pinterferer	dBm	-25	-25	-25	-25	
BW _{interferer}	MHz	60	80	90	100	
Finterferer (offset)	MHz	60	80	90	100	
		/	/	/	/	
		-60	-80	-90	-100	

- NOTE 1: The transmitter shall be set to 24 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 4.1.2.7.1.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4 of ETSI TS 138 101-1 [6].
- NOTE 2: The absolute value of the interferer offset $F_{interferer}$ (offset) shall be further adjusted to $([|F_{interferer}|/SCS] + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.
- NOTE 3: The interferer consists of the RMC specified in ETSI TS 138 101-1 [6], clauses A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in ETSI TS 138 101-1 [6], clauses A.5.1.1/A.5.2.1.

4.1.2.8.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.1.3.7 of the present document.

- 4.1.2.8.2 Void
- 4.1.2.8.3 Void
- 4.1.2.8.4 Void

4.1.2.8.5 Receiver Adjacent Channel Selectivity (ACS) for UL-MIMO

For UE(s) with two transmitter antenna connectors in a closed-loop spatial multiplexing scheme, the minimum requirements specified in clause 4.1.2.8.1 shall be met with the UL-MIMO configurations described in clause 4.1.2.2.5. For UL-MIMO, the parameter $P_{\text{CMAX_L}}$ is defined as the total transmitter power over the two transmit antenna connectors.

4.1.2.9 Receiver Blocking Characteristics

4.1.2.9.1 Receiver Blocking characteristics for single carrier

4.1.2.9.1.1 Definition

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occurs.

4.1.2.9.1.2 Limits

4.1.2.9.1.2.1 In-band blocking

For NR bands with F_{DL_high} < 2 700 MHz and F_{UL_high} < 2 700 In-Band Blocking (IBB)is defined for an unwanted interfering signal within the range of 15 MHz below and 15 MHz above the UE receive band.

The throughput of the wanted signal shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in ETSI TS 138 101-1 [6], A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in ETSI TS 138 101-1 [6], clauses A.5.1.1/A.5.2.1) with parameters specified in Table 4.1.2.9.1.2.1-1 and Table 4.1.2.9.1.2.1-2. The relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal. For operating bands with an unpaired DL part (as noted in Table 1.1-1), the requirements only apply for carriers assigned in the paired part.

Table 4.1.2.9.1.2.1-1: In-band blocking parameters for NR bands with F_{DL_high} < 2 700 MHz and F_{UL_high} < 2 700 MHz

RX parameter	Units	Channel bandwidth					
•		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	
Power in	dBm		REFSENS +	channel specific	value below		
transmission	dB	6	6	7	9	10	
bandwidth							
configuration							
BW _{interferer}	MHz			5			
Floffset, case 1	MHz			7,5			
F _{loffset, case 2}	MHz			12,5			
RX parameter	Units		Ch	nannel bandwid	lth		
-		30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	
Power in	dBm		REFSENS +	channel specific			
transmission	dB	11	12	13	14	15	
bandwidth							
configuration							
BWinterferer	MHz			5			
Floffset, case 1	MHz			7,5			
Floffset, case 2	MHz			12,5			
RX parameter	Units		Cł	nannel bandwid	lth		
		90 MHz	100 MHz				
Power in	dBm	REFSENS + c	hannel specific				
transmission		value	below				
bandwidth	dB	15,5	16				
configuration							
BWinterferer	MHz		5				
Floffset, case 1	MHz	7	,5				
Floffset, case 2	MHz	12	2,5				

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_Lf,c} at the minimum UL configuration specified in Table 4.1.2.7.1.2-3 with P_{CMAX_Lf,c} defined in clause 6.2.4 of ETSI TS 138 101-1 [6].

NOTE 2: The interferer consists of the RMC specified in ETSI TS 138 101-1 [6], clauses A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in ETSI TS 138 101-1 [6], clauses A.5.1.1/A.5.2.1 and 15 kHz SCS.

Table 4.1.2.9.1.2.1-2: In-band blocking for NR bands with $F_{DL\ high}$ < 2 700 MHz and $F_{UL\ high}$ < 2 700 MHz

NR band	Parameter	Unit	Case 1	Case 2	Case 3
	Pinterferer	dBm	-56	-44	-15
	Finterferer (offset)	MHz	-BW _{Channel} /2 -	≤ -BW _{Channel} /2 -	
			Floffset, case 1	Floffset, case 2	
			and	and	
			BW _{Channel} /2 +	≥ BW _{Channel} /2 +	
			Floffset, case 1	Floffset, case 2	
n1, n3, n7,	Finterferer	MHz	note 2	F _{DL_low} - 15	
n8, n20,				to	
n28, n38,				F _{DL_high} + 15	
n40, n41,					
n50, n51,					
n65, n75,					
n76					

NOTE 1: The absolute value of the interferer offset Finterferer (offset) shall be further adjusted to $(||F_{\text{interferer}}|/SCS|] + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. The interferer is an NR signal with 15 kHz SCS.

NOTE 2: For each carrier frequency, the requirement applies for two interferer carrier frequencies:

- a: -BWChannel/2 Floffset, case 1;
- b: BW_{Channel}/2 + F_{loffset}, case 1.

For NR bands with $F_{DL_low} \ge 3\,300$ MHz and $F_{UL_low} \ge 3\,300$ MHz In-Band Blocking (IBB) is defined for an unwanted interfering signal falling into the UE receive band or into an immediately adjacent frequency range up to $3 \times BW_{Channel}$ below or above the UE receive band with $BW_{Channel}$ is the bandwidth of the wanted signal. The throughput of the wanted signal shall be $\ge 95\,\%$ of the maximum throughput of the reference measurement channels as specified in ETSI TS 138 101-1 [6], clauses A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in ETSI TS 138 101-1 [6], clauses A.5.1.1/A.5.2.1) with parameters specified in Table 4.1.2.9.1.2.1-3 and Table 4.1.2.9.1.2.1-4. The relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal.

Table 4.1.2.9.1.2.1-3: In-band blocking parameters for NR bands with $F_{DL_low} \ge 3$ 300 MHz and $F_{UL_low} \ge 3$ 300 MHz

RX parameter	Units	Channel bandwidth					
-		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz	
Power in	dBm	RI	REFSENS + channel bandwidth specific value belo				
transmission	dB			6			
bandwidth							
configuration							
BWinterferer	MHz	10	15	20	40	50	
Floffset, case 1	MHz	15	22,5	30	60	75	
Floffset, case 2	MHz	25	37,5	50	100	125	
RX parameter	Units		Ch	nannel bandwid	th		
		60 MHz	80 MHz	90 MHz	100 MHz		
Power in	dBm	REFSENS	+ channel band	width specific va	alue below		
transmission	dB		6	6			
bandwidth							
configuration							
BW _{interferer}	MHz	60	80	90	100		
Floffset, case 1	MHz	90	120	135	150		
Floffset, case 2	MHz	150	200	225	250		

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 4.1.2.7.1.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4 of ETSI TS 138 101-1 [6].

NOTE 2: The interferer consists of the RMC specified in ETSI TS 138 101-1 [6], clauses A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in ETSI TS 138 101-1 [6], clauses A.5.1.1/A.5.2.1.

Table 4.1.2.9.1.2.1-4: In-band blocking for NR bands with F_{DL low} ≥ 3 300 MHz and F_{UL low} ≥ 3 300 MHz

NR band	Parameter	Unit	Case 1	Case 2					
	Pinterferer	dBm	-56	-44					
n77, n78	Finterferer (offset)	MHz	-BW _{Channel} /2 -	≤ -BW _{Channel} /2 -					
			Floffset, case 1	Floffset, case 2					
			and	and					
			BW _{Channel} /2 +	≥ BW _{Channel} /2 +					
			F _{loffset} , case 1	Floffset, case 2					
	Finterferer			F _{DL_low} - 3 × BW _{Channel}					
			Note 2	to					
				F _{DL_high} + 3 × BW _{Channel}					
NOTE 1: The	NOTE 1: The absolute value of the interferer offset Finterferer (offset) shall be further								
ac	djusted to ([$ F_{interfere} $	$_{\rm r}$ $ SCS +$	0,5)SCS MHz with SCS th	e sub-carrier spacing					
			a interferer is an NP sign						

of the wanted signal in MHz. The interferer is an NR signal with an SCS equal to that of the wanted signal.

NOTE 2: For each carrier frequency, the requirement applies for two interferer carrier frequencies: a: - BWChannel/2 - Floffset, case 1; b: BWChannel/2 + Floffset, case 1.

NOTE 3: BW_{Channel} denotes the channel bandwidth of the wanted signal.

4.1.2.9.1.2.2 Out-of-band blocking

For NR bands with F_{DL_high} < 2 700 MHz and F_{UL_high} < 2 700 MHz out-of-band band blocking is defined for an unwanted CW interfering signal falling outside a frequency range 15 MHz below or above the UE receive band. The throughput of the wanted signal shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in ETSI TS 138 101-1 [6], clauses A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in ETSI TS 138 101-1 [6], clauses A.5.1.1/A.5.2.1) with parameters specified in Table 4.1.2.9.1.2.2-1 and Table 4.1.2.9.1.2.2-2. The relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal. For operating bands with an unpaired DL part (as noted in Table 1.1-1), the requirements only apply for carriers assigned in the paired part.

Table 4.1.2.9.1.2.2-1: Out-of-band blocking parameters for NR bands with F_{DL_high} < 2 700 MHz and F_{UL_high} < 2 700 MHz

DV novemeter	Units		Channel bandwidth					
RX parameter	Units	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz 10 80 MHz 15		
Power in	dBm		REFSENS +	channel specific	value below			
transmission bandwidth configuration	dB	6	6	7	9	10		
RX parameter	l linite		Ch	annel bandwid	lth			
	Units	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz		
Power in transmission	dBm	REFSENS + channel specific value below						
bandwidth configuration	dB	11	12	13	14	15		
DV noromotor	Units		Ch	annel bandwid	lth			
RX parameter	Units	90 MHz	100 MHz					
Power in	dBm	REFSENS + c	hannel specific					
transmission		value	below					
bandwidth configuration	dB	15,5	16					

NOTE: The transmitter shall be set to 4 dB below Pcmax_t,c,c at the minimum UL configuration specified in Table 4.1.2.7.1.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4 of ETSI TS 138 101-1 [6].

Table 4.1.2.9.1.2.2-2: Out of-band blocking for NR bands with $F_{DL\ high}$ < 2 700 MHz and $F_{UL\ high}$ < 2 700 MHz

NR band	Parameter	Unit	Range 1	Range 2	Range 3
n1, n3, n7, n8,	Pinterferer	dBm	-44	-30	-15
n20, n28, n38, n40, n41, n50, n51, n65, n75, n76	Finterferer (CW)	MHz	-60 < f - F _{DL_low} < -15 or 15 < f - F _{DL_high} < 60	-85 < f - F _{DL_low} ≤ -60 or 60 ≤ f - F _{DL_high} < 85	$1 \le f \le F_{DL_low} - 85$ or $F_{DL_high} + 85 \le f$ $\le 12 750$

NOTE 1: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm for F_{Interferer} > 6 000 MHz.

NOTE 2: For band 51 the F_{DL_high} of band 50 is applied as F_{DL_high} for band 51. For band 50, the F_{DL_low} of band 51 is applied as F_{DL_low} for band 50.

NOTE 3: For band 76 the F_{DL_high} of band 75 is applied as F_{DL_high} for band 76. For band 75, the F_{DL_low} of band 76 is applied as F_{DL_low} for band 75.

NOTE 4: For UEs supporting both bands 38 and 41, the F_{DL_high} and F_{DL_low} of band 41 is applied as F_{DL_high} and F_{DL_low} for band 38.

NOTE 5: Void. NOTE 6: Void. NOTE 7: Void.

For interferer frequencies across ranges 1, 2 and 3 in Table 4.1.2.9.1.2.2-2, a maximum of:

$$[max\{24,6 \cdot [n \cdot N_{RB}/6]\}/min\{[n \cdot N_{RB}/10], 5\}]$$

exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a step size of $\min(BW_{channel}/2\rfloor.5)$ MHz with N_{RB} the number of resource blocks in the downlink transmission bandwidth configuration, BW_{Channel} is the bandwidth of the frequency channel in MHz and n = 1, 2, 3 for SCS = 15, 30, 60 kHz, respectively. For these exceptions, the requirements in clause 4.1.2.10 apply.

For NR bands with $F_{DL_low} \ge 3\,300\,$ MHz and $F_{UL_low} \ge 3\,300\,$ MHz out-of-band band blocking is defined for an unwanted CW interfering signal falling outside a frequency range up to $3\times BW_{Channel}$ below or from $3\times BW_{Channel}$ above the UE receive band, where $BW_{Channel}$ is the channel bandwidth. The throughput of the wanted signal shall be $\ge 95\,$ % of the maximum throughput of the reference measurement channels as specified in ETSI TS 138 101-1 [6], clauses A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in ETSI TS 138 101-1 [6], clauses A.5.1.1/A.5.2.1) with parameters specified in Table 4.1.2.9.1.2.2-3 and Table 4.1.2.9.1.2.2-4. The relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal.

Table 4.1.2.9.1.2.2-3: Out-of-band blocking parameters for NR bands with $F_{DL~low} \geq 3~300~MHz$ and $F_{UL~low} \geq 3~300~MHz$

RX parameter	Units	Channel bandwidth				
		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz
Power in	dBm	RI	EFSENS + chani	nel bandwidth sp	ecific value belov	W
transmission bandwidth configuration	dB	6	7	9	9	9
RX parameter	Units		Ch	annel bandwid	th	
		60 MHz	80 MHz	90 MHz	100 MHz	
Power in	dBm	REFSENS	+ channel band	width specific va	lue below	
transmission	dB	9	9	9	9	
bandwidth configuration						
0		1	1			

NOTE: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 4.1.2.7.1.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4 of ETSI TS 138 101-1 [6].

Table 4.1.2.9.1.2.2-4: Out of-band blocking for NR bands with $F_{DL\ low} \ge 3\ 300\ MHz$ and $F_{UL\ low} \ge 3\ 300\ MHz$

NR band	Parameter	Unit	Range1	Range 2	Range 3
n77, n78	Pinterferer	dBm	-44	-30	-15
(note 3)	Finterferer (CW)	MHz	-60 < f - F _{DL_low} ≤ -3 × BW _{Channel} or 3 × BW _{Channel} ≤ f - F _{DL_high} < 60	-200 < f - F _{DL_low} ≤ -MAX(60, 3 × BW _{Channel}) or MAX(60, 3 × BW _{Channel}) ≤ f - F _{DL_high} < 200	$\begin{array}{c} 1 \leq f \leq F_{DL_low} - \\ MAX(200, 3 \times BW_{Channel}) \\ or \\ F_{DL_high} + MAX(200, 3 \times BW_{Channel}) \\ \leq f \leq 12 \ 750 \end{array}$

- NOTE 1: The power level of the interferer (Pinterferer) for Range 3 shall be modified to -20 dBm for Finterferer > 6 000 MHz.
- NOTE 2: BW_{Channel} denotes the channel bandwidth of the wanted signal.
- NOTE 3: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm, for F_{Interferer} > 2 700 MHz and F_{Interferer} < 4 800 MHz. For BW_{Channel} > 15 MHz, the requirement for Range 1 is not applicable and Range 2 applies from the frequency offset of 3 × BW_{Channel} from the band edge. For BW_{Channel} larger than 60 MHz, the requirement for Range 2 is not applicable and Range 3 applies from the frequency offset of 3 × BW_{Channel} from the band edge.
- NOTE 4: The power level of the interferer (P_{Interferer}) for Range 3 shall be modified to -20 dBm, for F_{Interferer} > 3 650 MHz and F_{Interferer} < 5 750 MHz. For BW_{Channel} ≥ 40 MHz, the requirement for Range 2 is not applicable and Range 3 applies from the frequency offset of 3 × BW_{Channel} from the band edge.

For interferer frequencies across ranges 1, 2 and 3 in Table 4.1.2.9.1.2.2-4, a maximum of:

$$|max\{24,6 \cdot [n \cdot N_{RB}/6]\}/min\{|n \cdot N_{RB}/10|, 5\}|$$

Exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a step size of $\min[BW_{channel}/2]$. 5) MHz with N_{RB} the number of resource blocks in the downlink transmission bandwidth configuration, BW_{Channel} the bandwidth of the frequency channel in MHz and n = 1, 2, 3 for SCS = 15, 30, 60 kHz, respectively. For these exceptions, the requirements in clause 4.1.2.10 apply.

4.1.2.9.1.2.3 Narrow band blocking

This requirement is the measure of a receiver's ability to receive a NR signal at its assigned channel frequency in the presence of an unwanted narrow band CW interferer at a frequency, which is less than the nominal channel spacing.

The relative throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in ETSI TS 138 101-1 [6], clauses A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in ETSI TS 138 101-1 [6], clauses A.5.1.1/A.5.2.1) with parameters specified in Table 4.1.2.9.1.2.3-1. For operating bands with an unpaired DL part (as noted in Table 1.1-1), the requirements only apply for carriers assigned in the paired part.

Table 4.1.2.9.1.2.3-1: Narrow Band Blocking

NR	Parameter	Unit						Channel B	andwidth					
band			5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
n1, n3,	Pw	dBm			P _{REFSENS} + channel-bandwidth specific value below									
n7, n8,			16	13	14	16	16	16	16	16	16	16	16	16
n20,	P _{uw} (CW)	dBm	-55	-55	-55	-55	-55	-55	-55	-55	-55	-55	-55	-55
n28, n38,	F _{uw} (offset SCS= 15 kHz)	MHz	2,7075	5,2125	7,7025	10,2075	13,0275	15,6075	20,5575	25,7025	NA	NA	NA	NA
n40, n41, n50, n51, n65, n75, n76	F _{uw} (offset SCS= 30 kHz)	MHz	NA	NA	NA	NA	NA	NA	NA	NA	30,855	40,935	45,915	50,865

NOTE 1: The transmitter shall be set a 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 4.1.2.7.1.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4 of ETSI TS 138 101-1 [6].

NOTE 2: Reference measurement channel is specified in ETSI TS 138 101-1 [6], clauses A.3.2 and A.3.3 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in ETSI TS 138 101-1 [6], clauses A.5.1.1/A.5.2.1.

NOTE 3: The Prefsens power level is specified in Table 4.1.2.7.1.2-1 and Table 4.1.2.7.1.2-2 for two and four antenna ports, respectively.

4.1.2.9.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.1.3.7 of the present document.

4.1.2.9.2 Void

4.1.2.9.3 Void

4.1.2.9.4 Void

4.1.2.9.5 Receiver Blocking characteristics for UL-MIMO

For UE with two transmitter antenna connectors in a closed-loop spatial multiplexing scheme, the minimum requirements specified in clause 4.1.2.9.1 shall be met with the UL-MIMO configurations described in clause 4.1.2.2.5. For UL-MIMO, the parameter P_{CMAX_L} is defined as the total transmitter power over the two transmit antenna connectors.

4.1.2.10 Receiver Spurious Response

4.1.2.10.1 Receiver Spurious Response for single carrier

4.1.2.10.1.1 Definition

Spurious response is a measure of the ability of the receiver to receive a wanted signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency for which a response is obtained, i.e. for which the out-of-band blocking limit as specified in clause 4.1.2.9.1 is not met.

4.1.2.10.1.2 Limits

The throughput shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in ETSI TS 138 101-1 [6], clauses A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in ETSI TS 138 101-1 [6], clauses A.5.1.1/A.5.2.1) with parameters for the wanted signal as specified in Table 4.1.2.10.1.2-1 for NR bands with $F_{DL_high} < 2\,700$ MHz and $F_{UL_high} < 2\,700$ MHz and for the interferer as specified in Table 4.1.2.10.1.2-3. The relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal. For operating bands with an unpaired DL part (as noted in Table 1.1-1), the requirements only apply for carriers assigned in the paired part.

Table 4.1.2.10.1.2-1: Spurious response parameters for NR bands with $F_{DL\ high} < 2\ 700\ MHz$ and $F_{UL\ high} < 2\ 700\ MHz$

DV nonemeter	Units		С	hannel bandwid	lth					
RX parameter	Units	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz				
Power in	dBm	R	EFSENS + char	nel bandwidth s	pecific value belo	DW O				
transmission bandwidth configuration	dB	6	6	7	9	10				
RX parameter	Units		Channel bandwidth							
	Units	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz				
Power in	dBm	R	EFSENS + char	nel bandwidth s	pecific value belo	DW DW				
transmission bandwidth configuration	dB	11	12	13	14	15				
DV naramatar	Units		С	hannel bandwic	lth					
RX parameter	Units	90 MHz	100 MHz							
Power in	dBm	REFSENS	+ channel							
transmission		bandwidth specific value								
bandwidth		below								
configuration	dB	15,5	16							

NOTE: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 4.1.2.7.1.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4 in ETSI TS 138 101-1 [6].

Table 4.1.2.10.1.2-2: Spurious response parameters for NR bands with $F_{DL_low} \geq$ 3 300 MHz and $F_{UL_low} \geq$ 3 300 MHz

RX parameter	Units	Channel bandwidth						
		10 MHz	15 MHz	20 MHz	40 MHz	50 MHz		
Power in	dBm	RI	REFSENS + channel bandwidth specific value below					
transmission bandwidth configuration	dB	6	7	9	9	9		
RX parameter	Units		Ch	annel bandwid	th			
		60 MHz	80 MHz	90 MHz	100 MHz			
Power in	dBm	REFSENS	+ channel band	width specific va	lue below			
transmission bandwidth configuration	dB	9	9	9	9			
NOTE: The tra	nsmitter sha	all be set to 4 dB	below P _{CMAX_L,f,c}	at the minimum	UL configuration	specified in		

Table 4.1.2.7.1.2.3 with P_{CMAX_L,f,c} defined in clause 6.2.4 in ETSI TS 138 101-1 [6]

Table 4.1.2.10.1.2-3: Spurious response

Parameter	Unit	Level
PInterferer (CW)	dBm	-44
F _{Interferer}	MHz	Spurious response frequencies

4.1.2.10.1.3 Conformance

Void

The conformance tests for this requirement shall be as defined in clause 5.1.3.9.1 of the present document.

4.1.2.10.2 Void 4.1.2.10.3 Void

4.1.2.10.4

4.1.2.10.5 Receiver spurious response for UL-MIMO

4.1.2.10.5.1 Definition

Spurious response verifies the ability of the UE that supports UL MIMO to receive a wanted signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency at which a response is obtained i.e. for which the out of band blocking for UL MIMO limit as specified in clause 4.1.2.9.5 is not met.

4.1.2.10.5.2 Limits

The throughput measurement derived in the test procedure shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in ETSI TS 138 521-1 [1], clause A.3 with parameters specified in Tables 4.1.2.10.5-1 and 4.1.2.10.5-2.

Table 4.1.2.10.5-1: Spurious response parameters

RX parameter	Units	Channel bandwidth						
		10 MHz	15 MHz	20 MHz	30 MHz	40 MHz		
Power in	dBm		REFSENS + channel specific value below					
transmission bandwidth configuration	dB	6	7	9	9	9		
RX parameter	Units		Ch	annel bandwid	th			
		50 MHz	60 MHz	80 MHz	90 MHz	100 MHz		
Power in	dBm	REF:	SENS + channel	specific value be	elow			
transmission bandwidth configuration	dB	9	9	9	9	9		

NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L} with P_{CMAX_L} as defined in clause 6.2.4 of ETSI

TS 138 101-1 [6].

NOTE 2: The reference measurement channel is specified in clause A.3 of ETSI TS 138 101-1 [6] with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in clauses A.5.1.1/A.5.2.1 in ETSI

TS 138 101-1 [6].

Table 4.1.2.10.5-2: Spurious Response

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44
Finterferer	MHz	Spurious response frequencies

4.1.2.10.5.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.1.3.9 of the present document.

4.1.2.11 Receiver Intermodulation Characteristic

4.1.2.11.1 Receiver Intermodulation Characteristic for single carrier

4.1.2.11.1.1 Definition

Intermodulation response rejection is a measure of the capability of the receiver to receiver a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal.

4.1.2.11.1.2 Limits

The wideband intermodulation requirement is defined using a CW carrier and modulated NR signal as interferer 1 and interferer 2 respectively.

The throughput shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in ETSI TS 138 101-1 [6], clauses A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in ETSI TS 138 101-1 [6], clauses A.5.1.1/A.5.2.1) with parameters specified in Table 4.1.2.11.1.2-1 for NR bands with $F_{DL_high} < 2\,700$ MHz and $F_{UL_high} < 2\,700$ MHz and Table 4.1.2.11.1.2-2 for NR bands with $F_{DL_low} \geq 3\,300$ MHz and $F_{UL_low} \geq 3\,300$ MHz. The relative throughput requirement shall be met for any SCS specified for the channel bandwidth of the wanted signal. For operating bands with an unpaired DL part (as noted in Table 1.1-1), the requirements only apply for carriers assigned in the paired part.

Table 4.1.2.11.1.2-1: Wide band intermodulation parameters for NR bands with F_{DL} high < 2 700 MHz and F_{UL} high < 2 700 MHz

Rx parameter	Units					C	nannel b	andwidtl	h				
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
Pw in Transmission			REFSENS + channel bandwidth specific value below										
Bandwidth Configuration, per CC	dBm	6	6	7	9	10	11	12	13	14	15	15	16
P _{Interferer 1} (CW)	dBm		-46										
P _{Interferer 2} (Modulated)	dBm							-46					
BW _{Interferer 2}	MHz							5					
F _{Interferer 1} (Offset)	MHz		- BW _{Channel} /2 - 7,5 / + BW _{Channel} /2 + 7,5										
F _{Interferer 2} (Offset)	MHz							× F _{Interferer}					

- NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 4.1.2.7.1.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4 of ETSI TS 138 101-1 [6].
- NOTE 2: Reference measurement channel is specified in ETSI TS 138 101-1 [6], clauses A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in ETSI TS 138 101-1 [6] clauses A.5.1.1/A.5.2.1).
- NOTE 3: The modulated interferer consists of the Reference measurement channel specified in ETSLTS 138 101-1 [6], clauses A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in ETSLTS 138 101-1 [6], clauses A.5.1.1/A.5.2.1 and 15 kHz SCS.
- NOTE 4: The F_{interferer 1} (offset) is the frequency separation of the centre frequency of the carrier closest to the interferer and the centre frequency of the CW interferer and F_{interferer 2} (offset) is the frequency separation of the centre frequency of the carrier closest to the interferer and the centre frequency of the modulated interferer.

Table 4.1.2.11.1.2-2: Wide band intermodulation parameters for NR bands with F_{DL low} ≥ 3 300 MHz and F_{UL low} ≥ 3 300 MHz

Rx parameter	Units	10 MHz	20 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz		
P _w in Transmission Bandwidth Configuration, per CC	dBm		REFSENS + 6								
P _{Interferer 1} (CW)	dBm		-46								
P _{Interferer 2} (Modulated)	dBm		-46								
BW _{Interferer 2}	MHz				BW _{Cha}	annel					
F _{Interferer 1} (Offset)	MHz		-2 × BW _{Channel} / +2 × BW _{Channel}								
F _{Interferer 2} (Offset)	MHz		2 × Finterferer 1								

- NOTE 1: The transmitter shall be set to 4 dB below P_{CMAX_L,f,c} at the minimum UL configuration specified in Table 4.1.2.7.1.2-3 with P_{CMAX_L,f,c} defined in clause 6.2.4 of ETSI TS 138 101-1 [6].
- NOTE 2: Reference measurement channel is specified in ETSI TS 138 101-1 [6], clauses A.2.2, A.2.3, A.3.2 and A.3.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in ETSI TS 138 101-1 [6], clauses A.5.1.1/A.5.2.1).
- NOTE 3: The modulated interferer consists of the Reference measurement channel specified in ETSLTS 138 101-1 [6], clauses A.3.2.2 and A.3.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in ETSLTS 138 101-1 [6], clauses A.5.1.1/A.5.2.1 and the same SCS as the wanted signal.
- NOTE 4: The F_{interferer 1} (offset) is the frequency separation of the centre frequency of the carrier closest to the interferer and the centre frequency of the CW interferer and F_{interferer 2} (offset) is the frequency separation of the centre frequency of the carrier closest to the interferer and the centre frequency of the modulated interferer.

4.1.2.11.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.1.3.10 of the present document.

4.1.2.11.2 Void

4.1.2.11.3 Void

4.1.2.11.4 Void

4.1.2.11.5 Receiver Intermodulation Characteristic for UL-MIMO

For UE(s) with two transmitter antenna connectors in a closed-loop spatial multiplexing scheme, the minimum requirements in clause 4.1.2.11.1 shall be met with the UL-MIMO configurations described in clause 4.1.2.2.5. For UL-MIMO, the parameter $P_{\text{CMAX_L}}$ is defined as the total transmitter power over the two transmit antenna connectors.

4.1.2.12 Receiver Spurious Emissions

4.1.2.12.1 Receiver Spurious Emissions for single carrier

4.1.2.12.1.1 Definition

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

4.1.2.12.1.2 Limits

The power of any spurious emission shall not exceed the maximum level specified in Table 4.1.2.12.1.2-1.

Table 4.1.2.12.1.2-1: General receiver spurious emission requirements

Frequency range	Measurement	Maximum	Note
	bandwidth	level	
30 MHz ≤ f < 1 GHz	100 kHz	-57 dBm	
1 GHz ≤ f ≤ 12,75 GHz	1 MHz	-47 dBm	
12,75 GHz \leq f \leq 5 th harmonic of	1 MHz	-47 dBm	2
the upper frequency edge of the			
DL operating band in GHz			
12,75 GHz - 26 GHz	1 MHz	-47 dBm	3

NOTE 1: Unused PDCCH resources are padded with resource element groups with power level given by PDCCH as defined in ETSI TS 138 101-1 [6] clause C.3.1.

NOTE 2: Applies for Band that the upper frequency edge of the DL Band more than 2,69 GHz.

NOTE 3: Applies for Band that the upper frequency edge of the DL Band more than 5,2 GHz.

4.1.2.12.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.1.3.11 of the present document.

4.1.2.12.2 Void

4.1.2.12.3 Void

4.1.2.12.4 Void

4.1.2.13 Transmit OFF Power

4.1.2.13.1 Transmit OFF Power for Single Carrier

4.1.2.13.1.1 Definition

Transmit OFF power is defined as the mean power in the channel bandwidth when the transmitter is OFF. The transmitter is considered OFF when the UE is not allowed to transmit on any of its ports. An excess transmit OFF power potentially increases the Rise Over Thermal (ROT) and therefore reduces the cell coverage area for other UEs.

The transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1 ms) excluding any transient periods.

4.1.2.13.1.2 Limits

The transmit OFF power shall not exceed the values specified in Table 4.1.2.13.1.2-1.

Table 4.1.2.13.1.2-1: Transmit OFF power

Channel bandwidth	Transmit (d	Measurement bandwidth	
(MHz)	f ≤ 3,0 GHz	3,0 GHz < f ≤ 6,0 GHz	(MHz)
5	-48,5	-48,2	4,515
10	-48,5	-48,2	9,375
15	-48,5	-48,2	14,235
20	-48,5	-48,2	19,095
25	-48,5	-48,2	23,955
30	-48,5	-48,2	28,815
40	-48,5	-48,2	38,895
50	-48,3	-48,2	48,615
60	-48,3	-48,2	58,35
80	-48,3	-48,2	78,15
90	-48,3	-48,2	88,23
100	-48,3	-48,2	98,31

4.1.2.13.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.1.3.12.1 of the present document.

4.1	.2.1	3.2	Void
т. і		0.2	v Ola

4.1.2.13.3 Void

4.1.2.13.4 Void

4.1.2.13.5 Transmit OFF Power for UL-MIMO

4.1.2.13.5.1 Definition

The transmit OFF power is defined as the mean power at each transmit antenna connector in a duration of at least one sub-frame (1 ms) excluding any transient periods.

4.1.2.13.5.2 Limits

The transmit OFF power at each transmit antenna connector shall not exceed the values specified in clause 4.1.2.13.1.

4.1.2.13.5.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.1.3.12.5 of the present document.

4.2 Technical requirements specification for Frequency Range 2

4.2.1 Environmental profile

The technical requirements of the present document apply under the environmental profile for operation of the equipment, which shall be in accordance with its intended use. The equipment shall comply with all the technical requirements of the present document at all times when operating within the boundary limits of the operational environmental profile defined by its intended use.

4.2.2 Conformance requirements

4.2.2.0 General

The requirements in the present document are based on the assumption that the operating band (see tables 1.2-1 through 1.2-5) is shared between systems of the IMT family (for band 3 and 8 also GSM) or systems having compatible characteristics.

4.2.2.1 Introduction

To meet the essential requirement under article 3.2 of Directive 2014/53/EU [i.2] for IMT User Equipment (UE), a set of essential parameters in addition to those in ETSI EN 301 908-1 [i.12] have been identified. Table 4.2.2.1-1 provides a cross reference between these essential parameters and the corresponding technical requirements for equipment within the scope of the present document.

Table 4.2.2.1-1: Cross references

Essential parameter	Corresponding technical requirements	Corresponding test suite
Transmitter spectrum mask	4.2.2.4 Transmitter spectrum emissions mask	5.2.3.3
Transmitter unwanted emissions in the	4.2.2.5 Transmitter adjacent channel leakage power	5.2.3.4
out-of-band domain	ratio	
Transmitter unwanted emissions in the	4.2.2.6 Transmitter spurious emissions	5.2.3.5
spurious domain	1.2.2.0 Transmitter opunede emissione	0.2.0.0
Transmitter power limits	4.2.2.2 Transmitter maximum output power	5.2.3.1
Transmitter Power Control (TPC)	4.2.2.3 Transmitter minimum output power	5.2.3.2
Transmitter power accuracy	4.2.2.2 Transmitter maximum output power	5.2.3.1
Receiver unwanted emissions in the spurious	4.2.2.10 Receiver spurious emissions	5.2.3.9
domain	4.2.2.10 Receiver spurious erriissions	3.2.3.9
Receiver blocking	4.2.2.9 Receiver Blocking characteristics	5.2.3.8
Receiver desensitization	74.2.2.9 Receiver blocking characteristics	3.2.3.0
Receiver adjacent signal selectivity	4.2.2.8 Receiver Adjacent Channel Selectivity (ACS)	5.2.3.7
Receiver sensitivity	4.2.2.7 Receiver Reference Sensitivity Level	5.2.3.6
Equipment operating under the control of a network	ETSI EN 301 908-1 [i.12], clause 4.2.4 Control and Monitoring functions	

Unless otherwise stated, the transmitter characteristics are specified Over The Air (OTA) with a single or multiple transmit chains and the receiver characteristics are specified OTA as well.

4.2.2.2 Transmitter Maximum Output Power

4.2.2.2.1 Transmitter maximum output power for Single Carrier

4.2.2.2.1.0 General

Power class 1, 2, 3 and 4 are specified based on the assumption of certain UE types with specific device architectures. The UE types can be found in Table 4.2.2.2.1.0-1.

Table 4.2.2.2.1.0-1: Assumption of UE Types

UE Power class	UE type
1	Fixed wireless access (FWA) UE
2	Vehicular UE
3	Handheld UE
4	High power non-handheld UE

Power class 3 is the default power class.

4.2.2.2.1.1 Definition

The following requirements define the maximum output power radiated by the UE for any transmission bandwidth within the channel bandwidth for non-CA configuration unless otherwise stated. The period of measurement shall be at least one sub frame (1 ms).

The maximum allowed EIRP is derived from regulatory requirements [i.28]. The requirements are verified with the test metrics of the total component of EIRP (Link=TX beam peak direction, Meas=Link angle).

4.2.2.2.1.2 Limits

The UE maximum output power limits for power class 3 are listed in Table 4.2.2.2.1.2-3.

Table 4.2.2.2.1.2-1: Void

Table 4.2.2.2.1.2-2: Void

Table 4.2.2.2.1.2-3: UE maximum output power limits for power class 3

Operating band	Max EIRP (dBm)
n257	43
n258	43

Table 4.2.2.2.1.2-4: Void

4.2.2.2.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.2.3.1 of the present document.

4.2.2.3 Transmitter Minimum Output Power

4.2.2.3.1 Transmitter Minimum Output Power for Single Carrier

4.2.2.3.1.1 Definition

The minimum output power of the UE is defined as the EIRP in the channel bandwidth for all transmit bandwidth configurations (resource blocks) when the power is set to a minimum value.

The minimum output power is defined as the mean power in at least one sub frame (1 ms).

4.2.2.3.1.2 Limits

Table 4.2.2.3.1.2-1: Void

For power class 3 UEs, the minimum output power shall not exceed the values specified in Table 4.2.2.3.1.2-2 for each operating band supported. The minimum power is verified in beam locked mode with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

Table 4.2.2.3.1.2-2: Minimum output power for power class 3

Operating band	Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
n257, n258	50	-8,79	47,58
	100	-8,08	95,16
	200	-6,94	190,20
	400	-4,6	380,28

4.2.2.3.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.2.3.2 of the present document.

4.2.2.4 Transmitter Spectrum Emission Mask

4.2.2.4.1 Transmitter Spectrum Emission Mask for Single Carrier

4.2.2.4.1.1 Definition

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the assigned NR channel bandwidth.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

4.2.2.4.1.2 Limits

The power of any UE emission shall not exceed the levels specified in Table 4.2.2.4.1.2-1 for the specified channel bandwidth. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction, Meas=TRP grid). The requirements in clause 4.2.2.4.1.2 only apply when both UL and DL of a UE are configured for single CC operation, and they are of the same bandwidth. All out of band emissions for range 2 are TRP.

Table 4.2.2.4.1.2-1: General NR spectrum emission mask for frequency range 2: 23,45 GHz \leq f \leq 32,125 GHz

Spectrum emission limit (dBm)/ Channel bandwidth					
Δf _{OOB} (MHz)	50 MHz	100 MHz	200 MHz	400 MHz	Measurement bandwidth
± 0 - 5	-1,79	-1,79	-1,79	-1,79	1 MHz
± 5 - 10	-9,79	-1,79	-1,79	-1,79	1 MHz
± 10 - 20	-9,79	-9,79	-1,79	-1,79	1 MHz
± 20 - 40	-9,79	-9,79	-9,79	-1,79	1 MHz
± 40 - 100	-9,79	-9,79	-9,79	-9,79	1 MHz
± 100 - 200		-9,79	-9,79	-9,79	1 MHz
± 200 - 400			-9,79	-9,79	1 MHz
± 400 - 800				-9,79	1 MHz

NOTE 1: At the boundary of spectrum emission limit, the first and last measurement position with a 1 MHz filter is the inside of +0,5 MHz and -0,5 MHz, respectively.

NOTE 2: The measurements are to be performed above the upper edge of the channel and below the lower edge of the channel.

4.2.2.4.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.2.3.3.1 of the present document.

4.2.2.5 Transmitter Adjacent Channel Leakage Power Ratio

4.2.2.5.1 Transmitter Adjacent Channel Leakage Power Ratio for Single Carrier

4.2.2.5.1.1 Definition

NR Adjacent Channel Leakage power Ratio (NR_{ACLR}) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency at nominal channel spacing.

4.2.2.5.1.2 Limits

The assigned NR channel power and adjacent NR channel power are measured with rectangular filters with measurement bandwidths specified in Table 4.2.2.5.1.2-1.

If the measured adjacent channel power is greater than -35 dBm then the NR_{ACLR} shall be higher than the value specified in Table 4.2.2.5.1.2-1. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction, Meas=TRP grid).

Table 4.2.2.5.1.2-1: General requirements for NR_{ACLR} for 23,45 GHz ≤ f ≤ 30,3 GHz

	Channel bandwidth / NR _{ACLR} / Measurement bandwidth			andwidth
Test ID	50 MHz	100 MHz	200 MHz	400 MHz
1-2 and 4-5	12,9 dB	12,51 dB	12,34 dB	11,94
3 and 6	12,92	12,55	12,41	11,94
7-9	12,85	12,41	12,15	11,16
10-12	12,64	12,02	11,44	10,04
13-15	12,83	12,38	12,04	11,01
	47,58 MHz	95,16 MHz	190,20 MHz	380,28 MHz
	+50 / -50	+100,0 / -100,0	+200 / -200	+400 / -400
	1-2 and 4-5 3 and 6 7-9 10-12	Test ID 50 MHz 1-2 and 4-5 12,9 dB 3 and 6 12,92 7-9 12,85 10-12 12,64 13-15 12,83 47,58 MHz +50 /	Test ID 50 MHz 100 MHz 1-2 and 4-5 12,9 dB 12,51 dB 3 and 6 12,92 12,55 7-9 12,85 12,41 10-12 12,64 12,02 13-15 12,83 12,38 47,58 MHz 95,16 MHz +50	Test ID 50 MHz 100 MHz 200 MHz 1-2 and 4-5 12,9 dB 12,51 dB 12,34 dB 3 and 6 12,92 12,55 12,41 7-9 12,85 12,41 12,15 10-12 12,64 12,02 11,44 13-15 12,83 12,38 12,04 47,58 MHz 95,16 MHz 190,20 MHz +50 +100,0 +200 / / /

4.2.2.5.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.2.3.4.1 of the present document.

4.2.2.6 Transmitter Spurious Emissions

4.2.2.6.1 Transmitter Spurious Emissions for Single Carrier

4.2.2.6.1.1 Definition

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions unless otherwise stated. The spurious emission limits are specified in terms of general requirements in line with Recommendation ITU-R SM.329 [i.4] and NR operating band requirement to address UE co-existence. Spurious emissions are measured as TRP.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

4.2.2.6.1.2 Limits

4.2.2.6.1.2.1 Spurious emission limits

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than F_{OOB} (MHz) in Table 4.2.2.6.1.2-1 starting from the edge of the assigned NR channel bandwidth. The spurious emission limits in Table 4.2.2.6.1.2-2 apply for all transmitter band configurations (NRB) and channel bandwidths. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction, Meas=TRP grid).

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 4.2.2.6.1.2-1: Boundary between NR out of band and spurious emission domain

Channel bandwidth	50	100	200	400
	MHz	MHz	MHz	MHz
OOB boundary FOOB (MHz)	100	200	400	800

Table 4.2.2.6.1.2-2: Spurious emissions limits (ERC/REC 74-01 [i.13])

Frequency Range	Maximum Level	Measurement bandwidth	NOTE
30 MHz ≤ f < 1 000 MHz	-36 dBm	100 kHz	1
1 GHz ≤ f ≤ 7,25 GHz	-30 dBm	1 MHz	1
7,25 GHz ≤ f < 2 nd harmonic of	-13 dBm	1 MHz	1 2
the upper frequency edge of the UL operating band in GHz	-10 dBm	100 MHz	1 2 3

NOTE 1: The metric for unwanted emissions is TRP. However, the maximum EIRP (ERP) metric is valid as long as the max EIRP (ERP) does not hit the TRP limit.

NOTE 2: Both limits are simultaneously applicable.

NOTE 3: This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 4.2.2.6.1.2-1 from the edge of the channel bandwidth.

Table 4.2.2.6.1.2-3: Additional requirements (EC Decision (2020/590 EU) [i.25])

Frequency band	Channel ban	Channel bandwidth / Spectrum emission limit (dBm)			Measurement	NOTE
(GHz)	50	100	200	400	bandwidth	
	MHz	MHz	MHz	MHz		
23,6 ≤ f ≤ 24	1	1	1	1	200 MHz	1, 2, 4
	-5	-5	-5	-5	200 MHz	1, 3, 4

NOTE 1: The protection of frequency range 23 600 - 24 000 MHz is meant for protection of satellite passive services.

NOTE 2: Entry into force of EC Decision (2020/590 EU) [i.25].

NOTE 3: Entry into force on 1 January 2024. This limit applies to terminal stations brought into use after 1 January 2024. This limit does not apply to terminal stations that have been brought into use prior to that date. For those terminal stations, the limit of 1 dBm/200 MHz continues to apply after 1 January 2024.

NOTE 4: This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 4.2.2.6.1.2-1 from the edge of the channel bandwidth.

NOTE: The limit sets in Table 4.2.2.6.1.2-3 is less stringent than the requirement sets in Table 4.2.2.6.1.2-2. Therefore, it is sufficient that the UE only fulfils the requirement in Table 4.2.2.6.1.2-2.

4.2.2.6.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.2.3.5.1 of the present document.

4.2.2.7 Receiver Reference Sensitivity Level

4.2.2.7.1 Reference sensitivity power level Single Carrier

4.2.2.7.1.0 General

Unless otherwise stated, the receiver characteristics are specified Over The Air (OTA).

The minimum requirements on Effective Isotropic Sensitivity (EIS) are defined with two orthogonal polarizations.

4.2.2.7.1.1 Definition

The reference sensitivity power level REFSENS is the EIS level (total component) at the centre of the quiet zone in the RX beam peak direction, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

4.2.2.7.1.2	Limits
4.2.2.7.1.2.1	Void
4.2.2.7.1.2.2	Void

4.2.2.7.1.2.3 Reference sensitivity power level for power class 3

The throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in clauses A.2.3.2 and A.3.3.2 of ETSI TS 138 521-2 [2] (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in clause A.5.2.1 of ETSI TS 138 521-2 [2]) with peak reference sensitivity specified in Table 4.2.2.7.1.2.3-1. The requirement is verified with the test metric of EIS (Link=Beam peak search grids, Meas=Link Angle).

For the UEs that support multiple FR2 bands, the minimum requirement for Reference sensitivity in Table 4.2.2.7.1.2.3-1 shall be increased per band, respectively, by the reference sensitivity adjustment parameter Δ MBP and Δ MBs as specified in Table 4.2.2.7.1.2.3-1a. The requirement for the UE which supports a single FR2 band is specified in Table 4.2.2.7.1.2.3-1. The requirement for the UE which supports multiple FR2 bands is specified in both tables 4.2.2.7.1.2.3-1 and 4.2.2.7.1.2.3-1a.

Table 4.2.2.7.1.2.3-1: Reference sensitivity for power class 3

Operating band	REFSENS (dBm) / Channel bandwidth				
	50 MHz	100 MHz	200 MHz	400 MHz	
n257	-85,96	-82,96	-79,96	-76,96	
n258	-85,96	-82,96	-79,96	-76,96	
NOTE: The transmitter shall be set to P _{UMAX} as defined in clause 6.2.4 in the ETSI TS 138 101-2 [7].					

Table 4.2.2.7.1.2.3-1a: UE multi-band adjustment parameter for power class 3 (Rel-15)

Supported bands	∑MB _P (dB)	∑MBs (dB)
n257, n258	≤ 1,3	≤ 1,25

The REFSENS requirement shall be met for an uplink transmission using QPSK DFT-s-OFDM waveforms and for uplink transmission bandwidth less than or equal to that specified in Table 4.2.2.7.1.2.3-2.

Table 4.2.2.7.1.2.3-2: Uplink configuration for reference sensitivity

Operating	NR Band / Channel bandwidth / NRB / SCS / Duplex mode						
Operating band	50 MHz	100 MHz	200 MHz	400 MHz	scs	Duplex Mode	
n257	32	64	128	256	120 kHz	TDD	
n258	32	64	128	256	120 kHz	TDD	

Unless given by Table 4.2.2.7.1.2.3-3, the minimum requirements for reference sensitivity shall be verified with the network signalling value NS_200 (Table 6.2.3.3.1-1 of ETSI TS 138 521-2 [2]) configured.

Table 4.2.2.7.1.2.3-3: Network signalling value for reference sensitivity

Operating band	Network Signalling value
n258	NS_201

4.2.2.7.1.2.4 Void

4.2.2.7.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.2.3.6.1 of the present document.

4.2.2.8 Receiver Adjacent Channel Selectivity (ACS)

4.2.2.8.1 Receiver Adjacent Channel Selectivity Level Single Carrier

4.2.2.8.1.1 Definition

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive a NR signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

The requirement applies at the RIB when the AoA of the incident wave of the wanted signal and the interfering signal are both from the direction where peak gain is achieved.

The wanted and interfering signals apply to all supported polarizations, under the assumption of polarization match.

4.2.2.8.1.2 Limits

The UE shall fulfil the minimum requirement specified in Table 4.2.2.8.1.2-1 for all values of an adjacent channel interferer up to -25 dBm. However, it is not possible to directly measure the ACS, instead, the lower and upper range of test parameters are chosen in Table 4.2.2.8.1.2-2 and Table 4.2.2.8.1.2-3 where the throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in clauses A.2.3.2 and A.3.3.2 of ETSI TS 138 521-2 [2], with QPSK, R=1/3 and one sided dynamic OCNG Pattern OP.1 TDD for the DL-signal as described in clause A.5.2.1 of ETSI TS 138 521-2 [2]. The requirement is verified with the test metric of EIS (Link=RX beam peak direction, Meas=Link angle).

Table 4.2.2.8.1.2-1: Adjacent channel selectivity

		Adjacent channel selectivity / Channel bandwidth			
Operating band	Units	50	100	200	400
		MHz	MHz	MHz	MHz
n257, n258	dB	23	23	23	23

Table 4.2.2.8.1.2-2: Test parameters for adjacent channel selectivity, Case 1

Rx Parameter	Units	Channel bandwidth						
		50 MHz	100 MHz	200 MHz	400 MHz			
Power in Transmission Bandwidth Configuration	dBm	REFSENS + 14 dB						
P _{Interferer} for band n257, n258	dBm	REFSENS +35,5 dB	REFSENS +35,5 dB	REFSENS +35,5 dB	REFSENS +35,5 dB			
BWInterferer	MHz	50	100	200	400			
Finterferer (offset)	MHz	50 / -50 note 3	100 / -100 note 3	200 / -200 note 3	400 / -400 note 3			

- NOTE 1: The interferer consists of the Reference measurement channel specified in clause A.3.2 of ETSI TS 138 521-2 [2] with one sided dynamic OCNG Pattern as described in clause A.3.2 of ETSI TS 138 521-2 [2] and set-up according to annex C of ETSI TS 138 521-2 [2].
- NOTE 2: The REFSENS power level is specified in clause 4.2.2.7.1.2, which are applicable to different UE power classes.
- NOTE 3: The absolute value of the interferer offset $F_{Interferer}$ (offset) shall be further adjusted to $([|F_{Interferer}|/SCS] + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. Wanted and interferer signal have the same SCS.
- NOTE 4: The transmitter shall be set to 4 dB below the P_{UMAX,f,c} as defined in clause 6.2.4 in ETSI TS 138 101-2 [7], with the uplink configuration specified in Table 4.2.2.7.1.2.3-2.

Table 4.2.2.8.1.2-3: Test parameters for adjacent channel selectivity, Case 2

Rx Parameter	Units	Channel bandwidth					
		50 MHz	100 MHz	200 MHz	400 MHz		
Power in Transmission Bandwidth Configuration for band n257, n258	dBm	-46,5	-46,5	-46,5	-46,5		
P _{Interferer}	dBm		-25				
BWInterferer	MHz	50	100	200	400		
F _{Interferer} (offset)	MHz	50 / -50 note 2	100 / -100 note 2	200 / -200 note 2	400 / -400 note 2		

- NOTE 1: The interferer consists of the Reference measurement channel specified in clause 3.2 of ETSI TS 138 521-2 [2] with one sided dynamic OCNG Pattern TDD as described in clause A5.2.1 of ETSI TS 138 521-2 [2] and set-up according to annex C of ETSI TS 138 521-2 [2].
- NOTE 2: The absolute value of the interferer offset $F_{\text{Interferer}}$ (offset) shall be further adjusted to $([|F_{\text{Interferer}}|/SCS] + 0.5)SCS$ MHz with SCS the sub-carrier spacing of the wanted signal in MHz. Wanted and interferer signal have the same SCS.
- NOTE 3: The transmitter shall be set to 4 dB below the P_{UMAX,f,c} as defined in clause 6.2.4 in ETSI TS 138 101-2 [7], with the uplink configuration specified in Table 4.2.2.7.1.2.3-2.

4.2.2.8.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.2.3.7 of the present document.

4.2.2.9 Receiver Blocking Characteristics

4.2.2.9.1 Inband blocking Single Carrier

4.2.2.9.1.0 General

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occurs.

The requirement applies at the RIB when the AoA of the incident wave of the wanted signal and the interfering signal are both from the direction where peak gain is achieved.

The wanted and interfering signals apply to all supported polarizations, under the assumption of polarization match.

4.2.2.9.1.1 Definition

In-band blocking is defined for an unwanted interfering signal falling into the UE receive band or into the spectrum equivalent to twice the channel bandwidth below or above the UE receive band at which the relative throughput shall meet or exceed the minimum requirement for the specified measurement channels.

4.2.2.9.1.2 Limits

The throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in annex A of ETSI TS 138 521-2 [2] with one sided dynamic OCNG Pattern for the DL-signal as described in annex A of ETSI TS 138 521-2 [2]. The requirement is verified with the test metric of EIS (Link=RX beam peak direction, Meas=Link angle).

Table 4.2.2.9.1.2-1: In band blocking requirements

Rx parameter	Units	Channel bandwidth						
-		50 MHz	100 MHz	200 MHz	400 MHz			
Power in Transmission Bandwidth Configuration	dBm		REFSENS + 14 dB					
BWInterferer	MHz	50	100	200	400			
P _{Interferer} for bands n257, n258	dBm	REFSENS + 35,5 dB	REFSENS + 35,5 dB	REFSENS + 35,5 dB	REFSENS + 35,5 dB			
Floffset	MHz	≤ 100 & ≥ -100	≤ 200 & ≥ -200	≤ 400 & ≥ -400	≤ 800 & ≥ -800			
		note 5	note 5	note 5	note 5			
FInterferer	MHz	F _{DL_low} + 25 to	F _{DL_low} + 50 to	F _{DL_low} + 100 to	F _{DL_low} + 200 to			
		F _{DL_high} - 25	F _{DL_high} - 50	F _{DL_high} - 100	F _{DL_high} - 200			

- NOTE 1: The interferer consists of the Reference measurement channel specified in annex A of ETSI TS 138 521-2 [2] with one sided dynamic OCNG Pattern OP1.TDD as described in annex A of ETSI TS 138 521-2 [2] and set-up according to annex C of ETSI TS 138 521-2 [2].
- NOTE 2: The REFSENS power level is specified in clause 4.2.2.7.1.2, which are applicable according to different UE power classes.
- NOTE 3: The wanted signal consists of the reference measurement channel specified in annex A of ETSI TS 138 521-2 [2] QPSK, R=1/3 with one sided dynamic OCNG pattern OP1.TDD as described in annex A of ETSI TS 138 521-2 [2] and set-up according to annex C of ETSI TS 138 521-2 [2].
- NOTE 4: F_{loffset} is the frequency separation between the centre of the aggregated CA bandwidth and the centre frequency of the Interferer signal.
- NOTE 5: The absolute value of the interferer offset F_{loffset} shall be further adjusted to ([|F_{Interferer}|/SCS] + 0,5)SCS MHz with SCS the sub-carrier spacing of the wanted signal in MHz. Wanted and interferer signal have the same SCS.
- NOTE 6: Finterferer range values for unwanted modulated interfering signals are interferer centre frequencies.
- NOTE 7: The transmitter shall be set to 4 dB below the P_{UMAX,f,c} as defined in clause 6.2.4 in ETSI TS 138 101-2 [7], with the uplink configuration specified in Table 4.2.2.7.1.2.3-2.

4.2.2.9.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.2.3.8 of the present document.

4.2.2.10 Receiver Spurious Emissions

4.2.2.10.1 Receiver Spurious Emissions Single Carrier

4.2.2.10.1.1 Definition

The spurious emissions power is the power of emissions generated or amplified in a receiver. The spurious emissions power level is measured as TRP.

4.2.2.10.1.2 Limits

The power of any spurious emission shall not exceed the maximum level specified in Table 4.2.2.10.1.2-1. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction).

Table 4.2.2.10.1.2-1: Receiver spurious emissions limits (ERC/REC 74-01)

Frequency Range	Maximum Level	Measurement bandwidth	Note
30 MHz ≤ f < 1 000 MHz	-36 dBm	100 kHz	1
1 GHz ≤ f ≤ 7,25 GHz	-30 dBm	1 MHz	1
7,25 GHz ≤ f < 2 nd harmonic of	-13 dBm	1 MHz	1 2
the upper frequency edge of the UL operating band in GHz	-10 dBm	100 MHz	1 2

NOTE 1: The metric for unwanted emissions is TRP. However, the maximum EIRP (ERP) metric is valid as long as the max EIRP (ERP) does not hit the TRP limit.

4.2.2.10.1.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.2.3.9 of the present document.

4.3 Technical requirements specification for Frequency Range 1 and Frequency Range 2 interworking operation with other radios

4.3.1 Environmental profile

The technical requirements of the present document apply under the environmental profile for operation of the equipment, which shall be in accordance with its intended use. The equipment shall comply with all the technical requirements of the present document at all times when operating within the boundary limits of the operational environmental profile defined by its intended use.

4.3.2 Conformance requirements

4.3.2.0 General

Unless otherwise stated, the transmitter and receiver characteristics are specified at the antenna connector(s) of the UE for the bands operating on frequency range 1 and over the air for the bands operating on frequency range 2. The requirements for frequency range 1 and frequency range 2 can be verified separately. For the carrier in frequency range 1, requirements can be verified with NR FR2 link disabled. For the carrier in frequency range 2, requirements can be verified in OTA mode ensuring the E-UTRA link is functional.

NOTE 2: Both limits are simultaneously applicable.

For the transmitter characteristics, unless otherwise stated, the requirements for NR transmitter written in ETSI TS 138 101-1 [6] and ETSI TS 138 101-2 [7] apply and are assumed anchor agnostic.

Unless otherwise stated, if UE indicates IE maxNumberSRS-Ports-PerResource = n2 in NR standalone operation mode, the said UE shall meet the NR requirements for either power class 2 or power class 3 in EN-DC within FR1 if UE indicates IE maxNumberSRS-Ports-PerResource = n1 for EN-DC on this NR band.

For the receiver characteristics, the requirements defined in this clause are the extra requirements compared with the single carrier requirements defined in ETSI TS 138 101-1 [6] and ETSI TS 138 101-2 [7].

Unless otherwise stated, the UL and DL reference measurement channels are the same with the configurations specified in ETSI TS 138 101-1 [6] and ETSI TS 138 101-2 [7].

Unless otherwise stated, requirements for NR written in ETSI TS 138 101-1 [6] and ETSI TS 138 101-2 [7] apply and are assumed anchor agnostic. Requirements are verified under conditions where anchor resources do not interfere NR operation.

For the requirements of FR1 in this clause, the UE shall be verified with four Rx antenna ports and skip two Rx antenna ports requirements in operating bands where the UE is equipped with four Rx antenna ports, otherwise, the UE shall be verified with two Rx antenna ports.

4.3.2.1 Introduction

To meet the essential requirement under article 3.2 of Directive 2014/53/EU [i.2] for IMT User Equipment (UE), a set of essential parameters in addition to those in ETSI EN 301 908-1 [i.12] have been identified. Table 4.3.2.1-1 provides a cross reference between these essential parameters and the corresponding technical requirements for equipment within the scope of the present document.

Table 4.3.2.1-1: Cross references

Essential parameter	Corresponding technical requirements	Corresponding test suite
Transmitter spectrum mask	4.2.2.4. Transmitter Spectrum emissions most	5.3.3.3
Transmitter unwanted emissions in the out-of-band domain	4.3.2.4 Transmitter Spectrum emissions mask 4.3.2.5 Transmitter adjacent channel leakage power ratio	5.3.3.4
Transmitter unwanted emissions in the spurious domain	4.3.2.6 Transmitter spurious emissions	5.3.3.5
Transmitter power limits	4.3.2.2 Transmitter maximum output power	5.3.3.1
Transmitter Power Control (TPC)	4.3.2.3 Transmitter minimum output power	5.3.3.2
Transmitter power accuracy	4.3.2.2 Transmitter maximum output power	5.3.3.1
Receiver unwanted emissions in the spurious domain	4.3.2.12Receiver spurious emissions	5.3.11
Receiver blocking Receiver desensitization	4.3.2.9 Receiver Blocking characteristics	5.3.3.8
Receiver spurious response rejection	4.3.2.10 Receiver spurious response	5.3.3.9
Receiver radio-frequency intermodulation	4.3.2.11 Receiver Intermodulation characteristics	5.3.3.10
Receiver adjacent signal selectivity	4.3.2.8 Receiver Adjacent Channel Selectivity (ACS)	5.3.3.7
Receiver sensitivity	4.3.2.7 Receiver Reference Sensitivity Level	5.3.3.6
Equipment operating under the control of a network	ETSI EN 301 908-1 [i.12], clause 4.2.4 Control and Monitoring functions	-

4.3.2.2 Transmitter Maximum Output Power

4.3.2.2.1 Void

4.3.2.2.2 Transmitter Maximum Output Power for EN-DC

4.3.2.2.2.1 Void

4.3.2.2.2. Void

4.3.2.2.2.3 Transmitter Maximum Output Power for Inter-Band EN-DC within FR1

4.3.2.2.3.1 Definition

For inter-band EN-DC of E-UTRA and NR in FR1, the following UE Power Classes define the maximum output power for any transmission bandwidth within the aggregated channel bandwidth. The maximum output power is measured as the sum of the maximum output power at each UE antenna connector. The period of measurement shall be at least one sub frame (1 ms). UE maximum output power shall be measured over all component carriers from different bands. If each band has separate antenna connectors, maximum output power is measured as the sum of maximum output power at each UE antenna connector.

4.3.2.2.3.2 Limits

LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

For overlapping UL transmission, the maximum output power for the DC configuration shall be within the range in Table 4.3.2.2.3.2-1.

For non-overlapping UL transmission, the maximum output power for the DC configuration shall be within the range in Table 4.2.2.1.2-1 in ETSI EN 301 908-13 [12] and Table 4.1.2.2.1.2-1 for E-UTRA carrier and NR carrier respectively.

Table 4.3.2.2.3.2-1: Maximum output power for inter-band EN-DC (two bands) (Overlapping UL transmission)

EN-DC	Power class 3 (dBm) LTE BW ≤ 20 MHz							
configuration	NR BW ≤	20 MHz	20 MHz < NR		40 MHz < NR I	40 MHz < NR BW ≤ 100 MHz		
	Lower limit (dBm)	Upper limit (dBm)	Lower limit (dBm)	Upper limit (dBm)	Lower limit (dBm)	Upper limit (dBm)		
DC_1A_n28A	19,3	25,7	19,3	25,7	19	26		
DC_1A_n77A	19	26	19	26	19	26		
DC_1A_n78A	19	26	19	26	19	26		
DC_3A_n7A	19,3 (note 1)	25,7	19,3 (note 1)	25,7	19 (note 1)	26		
DC_3A_n28A	19,3 (note 1)	25,7	19,3 (note 1)	25,7	19 (note 1)	26		
DC_3A_n77A	19 (note 1)	26	19 (note 1)	26	19 (note 1)	26		
DC_3A_n78A	19 (note 1)	26	19 (note 1)	26	19 (note 1)	26		
DC_3A_n82A	19,3 (note 1)	25,7	19.3 (note 1)	25.7	19 (note 1)	26		
DC_7A_n28A	19,3 (note 1)	25,7	19,3 (note 1)	25,7	19 (note 1)	26		
DC_7A_n78A DC_7C_n78A	19	26	19	26	19	26		
DC_8A_n77A	19	26	19	26	19	26		
DC_8A_n78A	19 (note 1)	26	19 (note 1)	26	19 (note 1)	26		
DC_20A_n8A	19,3	25,7	19,3	25,7	19	26		

EN-DC	Power class 3 (dBm)						
configuration			LTE BV	<i>N</i> ≤ 20 MHz			
Configuration	NR BW ≤	20 MHz	20 MHz < NR	BW ≤ 40 MHz	40 MHz < NR	BW ≤ 100 MHz	
	Lower limit (dBm)	Upper limit (dBm)	Lower limit (dBm)	Upper limit (dBm)	Lower limit (dBm)	Upper limit (dBm)	
DC_20A_n28A DC_20A_n83A	19,3	25,7	19,3	25,7	19	26	
DC_20A_n78A	19 (note 1)	26	19 (note 1)	26	19	26	
DC_28A_n77A	19	26	19	26	19	26	
DC_28A_n78A	19 (note 1)	26	19 (note 1)	26	19	26	
DC_41A_n77A DC_41C_n77A	19 (note 1)	26	19 (note 1)	26	19(note 1)	26	
DC_41A_n78A DC_41C_n78A	19 (note 1)	26	19 (note 1)	26	19(note 1)	26	

- NOTE 1: For the transmission bandwidths confined within Fullow and Fullow + 4 MHz or Fullingh 4 MHz and Fullingh, the maximum output power requirement applies by reducing the lower limit by 1,5 dB.
- NOTE 2: For inter-band EN-DC the maximum power requirement should apply to the total transmitted power over all component carriers (per UE).
- NOTE 3: Power Class 3 is the default power class unless otherwise stated.

4.3.2.2.3.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.1.2.3 of the present document.

4.3.2.2.2.4 Transmitter Maximum Output Power for Inter-Band EN-DC including FR2

4.3.2.2.2.4.1 Definition

The maximum output power values for EIRP are found in Table 4.2.2.2.1.2-3. The maximum allowed EIRP is derived from regulatory requirements [i.28]. The requirements are verified with the test metric of total component of EIRP (Link=TX beam peak direction, Meas=Link angle).

4.3.2.2.4.2 Limits

LTE anchor agnostic approach is applied as defined in clause 4.3.2.1. Same limits as in clause 4.2.2.2.1.2 for the NR carrier apply.

4.3.2.2.4.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.1.2.4 of the present document.

4.3.2.2.2.5 Transmitter Maximum Output Power for Inter-Band EN-DC including both FR1 and FR2

4.3.2.2.5.1 Definition

Same as in clause 4.3.2.2.3.1 and clause 4.3.2.2.4.1.

4.3.2.2.5.2 Limits

The FR1 conducted and FR2 radiated requirements are tested separately. The NSA limits/requirements apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 4.3.2.2.2.3.2 and clause 4.3.2.2.2.4.2 respectively.

4.3.2.2.5.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.1.2.5 of the present document.

4.3.2.3 Transmitter Minimum Output Power

4.3.2.3.1 Void

4.3.2.3.2 Transmitter Minimum Output Power for EN-DC

4.3.2.3.2.1 Void

4.3.2.3.2.2 Void

4.3.2.3.2.3 Transmitter Minimum Output Power for Inter-Band EN-DC within FR1

4.3.2.3.2.3.1 Definition

The minimum output power of the UE is defined as the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks) when the power is set to a minimum value. The minimum output power is defined as the mean power in one sub-frame (1 ms).

4.3.2.3.2. Limits

No exception requirements are applicable to NR or LTE. LTE anchor agnostic approach is applied.

Same limit as in clause 4.1.2.3.1.2 for the NR carrier.

4.3.2.3.2.3.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.2.2.3 of the present document

4.3.2.3.2.4 Void

4.3.2.3.2.4 Transmitter Minimum Output Power for Inter-Band EN-DC including FR2

4.3.2.3.2.4.1 Definition

The minimum output power of the UE is defined as the EIRP in the channel bandwidth for all transmit bandwidth configurations (resource blocks) when the power is set to a minimum value. The minimum power is verified in beam locked mode with the test metric of EIRP (Link=TX beam peak direction, Meas=Link angle).

4.3.2.3.2.4.2 Limits

LTE anchor agnostic approach is applied as defined in clause 4.3.2.1. Same limits as in clause 4.2.2.3.1.2 for the NR carrier.

4.3.2.3.2.4.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.2.2.4 of the present document.

4.3.2.3.2.5 Transmitter Minimum Output Power for Inter-Band EN-DC including both FR1 and FR2

4.3.2.3.2.5.1 Definition

Same as in clause 4.3.2.3.2.3.1 and clause 4.3.2.3.2.4.1.

4.3.2.3.2.5.2 Limits

The FR1 conducted and FR2 radiated requirements are tested separately. The NSA limits/requirements apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 4.3.2.3.2.3.2 and clause 4.3.2.3.2.4.2 respectively. LTE anchor agnostic approach is applied as defined in clause 4.3.2.1.

4.3.2.3.2.5.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.2.2.5 of the present document.

4.3.2.4 Transmitter Spectrum Emission Mask

4.3.2.4.	1 \	lo/	id	ı

4.3.2.4.2 Transmitter Spectrum Emission Mask for EN-DC

4.3.2.4.2.1 Void

4.3.2.4.2.2 Void

4.3.2.4.2.3 Transmitter Spectrum Emission for Inter-Band EN-DC within FR1

4.3.2.4.2.3.1 Definition

The Out of band emissions are unwanted emissions immediately outside the assigned channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a spectrum emission mask and an adjacent channel leakage power ratio.

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the assigned NR channel bandwidth.

4.3.2.4.2.3.2 Limits

No exception requirements are applicable to NR or LTE. LTE anchor agnostic approach is applied.

4.3.2.4.2.3.2.1 General spectrum emission mask

Power of any UE emission shall fulfil requirements in tables 4.1.2.4.1.2.1-1 and 4.1.2.4.1.2.1-2 for the NR carrier.

4.3.2.4.2.3.2.2 Additional spectrum emission mask

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_04" is indicated in the cell (applicable to band n41), Power of any UE emission shall fulfil the requirements in Table 4.1.2.4.1.2.2-1 for the NR carrier.

4.3.2.4.2.3.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.3.2.3 of the present document.

4.3.2.4.2.4 Transmitter Spectrum Emission for Inter-Band EN-DC including FR2

4.3.2.4.2.4.1 Definition

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the assigned NR channel bandwidth. For frequencies offset greater than F_{OOB} as specified the transmit spurious requirements are applicable. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction, Meas=TRP grid).

4.3.2.4.2.4.2 Limits

LTE anchor agnostic approach is applied as defined in clause 4.3.2.1. Same limits as in clause 4.2.2.4.1.2 for the NR carrier.

4.3.2.4.2.4.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.3.2.4 of the present document.

4.3.2.4.2.5 Transmitter Spectrum Emission for Inter-Band EN-DC including both FR1 and FR2

4.3.2.4.2.5.1 Definition

Same as in clause 4.3.2.4.2.3.1 and clause 4.3.2.4.2.4.1.

4.3.2.4.2.5.2 Limits

The FR1 conducted and FR2 radiated requirements are tested separately. The NSA limits/requirements apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 4.3.2.4.2.3.2 and clause 4.3.2.4.2 respectively. LTE anchor agnostic approach is applied as defined in clause 4.3.2.1.

4.3.2.4.2.5.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.3.2.5 of the present document.

4.3.2.5 Transmitter Adjacent Channel Leakage Power Ratio

4.3.2.5.1 Void

4.3.2.5.2 Transmitter Adjacent Channel Leakage Power Ratio for EN-DC

4.3.2.5.2.1 Void

4.3.2.5.2.2 Void

4.3.2.5.2.3 Transmitter Adjacent Channel Leakage Power Ratio for Inter-Band EN-DC within FR1

4.3.2.5.2.3.1 Definition

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

NR adjacent channel leakage power ratio (NR_{ACLR}) is the ratio of the filtered mean power centred on the assigned NR channel frequency to the filtered mean power centred on an adjacent channel frequency.

4.3.2.5.2.3.2 Limits

No exception requirements are applicable to NR or LTE. LTE anchor agnostic approach is applied.

If the measured adjacent channel power is greater than -50 dBm then the measured NR_{ACLR} shall be higher than the limits in Table 4.1.2.5.1.2.1-2 for the NR carrier.

4.3.2.5.2.3.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.4.2.3 of the present document.

4.3.2.5.2.4 Void

4.3.2.5.2.4 Transmitter Adjacent Channel Leakage Power Ratio for Inter-Band EN-DC including

FR2

4.3.2.5.2.4.1 Definition

NR Adjacent Channel Leakage power Ratio (NR_{ACLR}) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency at nominal channel spacing. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction, Meas=TRP grid).

4.3.2.5.2.4.2 Limits

LTE anchor agnostic approach is applied as defined in clause 4.3.2.1. Same limits as in clause 4.2.2.5.1.2 for the NR carrier.

4.3.2.5.2.4.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.4.2.4 of the present document.

4.3.2.5.2.5 Transmitter Adjacent Channel Leakage Power Ratio for Inter-Band EN-DC including

both FR1 and FR2

4.3.2.5.2.5.1 Definition

Same as in clause 4.3.2.5.2.3.1 and clause 4.3.2.5.2.4.1.

4.3.2.5.2.5.2 Limits

The FR1 conducted and FR2 radiated requirements are tested separately. The NSA limits/requirements apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 4.3.2.5.2.3.2 and clause 4.3.2.5.2.4.2 respectively. LTE anchor agnostic approach is applied as defined in clause 4.3.2.1.

4.3.2.5.2.5.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.4.2.5 of the present document.

4.3.2.6 Transmitter Spurious Emissions

4.3.2.6.1 V	'oi	d
-------------	-----	---

4.3.2.6.2 Transmitter Spurious Emissions for EN-DC

4.3.2.6.2.1 Void

4.3.2.6.2.2 Void

4.3.2.6.2.3 Transmitter Spurious Emissions for Inter-Band EN-DC within FR1

4.3.2.6.2.3.1 Definition

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions unless otherwise stated. The spurious emission limits are specified in terms of general requirements in line with Recommendation ITU-R SM.329 [i.4] and NR operating band requirement to address UE co-existence.

4.3.2.6.2.3.2 Limits

4.3.2.6.2.3.2.1 General spurious emissions

Exception requirements are applicable for both NR and LTE, therefore the LTE anchor agnostic approach is not applied.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than F_{OOB} (MHz) from the edge of the channel bandwidth shown in Table 4.1.2.6.1.2.1-0 for NR carrier, and Table 4.2.4.1.2-1 of ETSI EN 301 908-13 [12] for E-UTRA carrier.

Same limits as in Table 4.1.2.6.1.2.1-1 for each component carrier.

NOTE: The general spurious emission requirements with both uplink carriers active are allowed to be verified for only a single inter-band EN-DC configuration per NR band. Furthermore, the requirements are allowed to be verified by measuring spurious emissions at the specific frequencies where second and third-order intermodulation products generated by the two transmitted carriers can occur.

4.3.2.6.2.3.2.2 Spurious emission band UE co-existence

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

The requirements are in Table 4.3.2.6.2.3.2.2-1 for each component carrier with all component carriers are active.

NOTE 1: For inter-band EN-DC with uplink assigned to one LTE band and one NR band the requirements in Table 4.3.2.6.2.3.2.2-1 could be verified by measuring spurious emissions at the specific frequencies where second and third-order intermodulation products generated by the two transmitted carriers can occur.

Table 4.3.2.6.2.3.2.2-1: Requirements for Spurious Emissions UE Co-existence

	Spurious emission											
EN-DC Configuration	Protected band	Frequen	cy ra	nge (MHz)	Maximum Level (dBm)	MBW (MHz)	Note					
DC_1_n28	E-UTRA Band, 7, 8, 20, 31, 38, 40, 41	F _{DL_low}	-	F _{DL_high}	-50	1						
	E-UTRA Band 1, 22, 32, 43, 65 NR band n77,n78	F _{DL_low}	-	F _{DL_high}	-50	1	2					
	E-UTRA band 3, 34	F _{DL_low}	-	F _{DL_high}	-50	1	4					
	E-UTRA Band 1, 65	F_{DL_low}	-	F _{DL_high}	-50	1	8, 9					
	Frequency range	470	-	694	-42	8	4, 14					
	Frequency range	470	-	710	-26,2	6	12					
	Frequency range	758	-	773	-32	1	4					
	Frequency range	773	-	803	-50	1						
	Frequency range	662	-	694	-26,2	6	4					
	Frequency range	1 880	-	1 895	-40	1	4, 13					
	Frequency range	1 895	-	1 915	-15,5	5	4, 6, 13					
	Frequency range	1 915	-	1 920	+1,6	5	4, 6, 13					
DC_1_n77	E-UTRA Band 1, 3, 7, 8, 20, 28, 34, 40, 41, 65	F _{DL_low}	-	F _{DL_high}	-50	1						
	Frequency range	1 880	-	1 895	-40	1	4, 7					
	Frequency range	1 895	-	1 915	-15,5	5	4, 6, 7					
	Frequency range	1 915	-	1 920	+1,6	5	4, 6, 7					
DC_1_n78	E-UTRA Band 1, 3, 7, 8, 20, 28, 34, 40, 41, 65	F _{DL_low}	-	F _{DL_high}	-50	1						
	Frequency range	1 880	-	1 895	-40	1	4, 7					
	Frequency range	1 895	-	1 915	-15,5	5	4, 6, 7					
	Frequency range	1 915	-	1 920	+1,6	5	4, 6, 7					
DC_3_n7	E-UTRA Band 1, 7, 8, 20, 28, 31, 32, 33, 34, 40, 43, 50, 51, 65, 67, 75, 76	F _{DL_low}	-	F _{DL_high}	-50	1						
	E-UTRA band 3	F _{DL_low}	-	F_{DL_high}	-50	1	4					

		Spu	rious	emission			
EN-DC Configuration	Protected band	Frequen	cy ra	nge (MHz)	Maximum Level (dBm)	MBW (MHz)	Note
	E-UTRA band 22, 42	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	2 570	-	2 575	+1,6	5	4, 5, 6
	Frequency range	2 575	-	2 595	-15,5	5	4, 5, 6
	Frequency range	2 595	-	2 620	-40	1	4, 5
DC_3_n28	E-UTRA Band 1, 42, 43, 50, 51,						
	65, 75, 76 NR band n77, n78	F _{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA band 1	F _{DL_low}	-	F _{DL_high}	-50	1	8, 10
	E-UTRA band 3	F _{DL_low}	-	F _{DL_high}	-50	1	4
	E-UTRA Band 7, 8, 20, 31, 34, 38, 40,41	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	1 884,5	-	1 915,7	-41	0,3	
	Frequency range	470	-	710	-26,2	6	12
	Frequency range	758	-	773	-32	1	4
	Frequency range	773	-	803	-50	1	·
	Frequency range	1 884,5	-	1 915,7	-41	0,3	3, 8
DC_3_n77	E-UTRA Band 1, 3, 7, 8, 20, 28, 34, 40, 41, 65	F _{DL_low}	-	F _{DL_high}	-50	1	2, 0
	Frequency range	1 884,5	-	1 915,7	-41	0,3	3
DC_3_n78	E-UTRA Band 1, 3, 7, 8, 20, 28, 34, 40, 41, 65	F _{DL_low}	-	F _{DL_high}	-50	1	<u> </u>
	Frequency range	1 884,5	-	1 915,7	-41	0.3	3
DC_7_n28	E-UTRA Band 3, 7, 8, 20, 31, 34, 40	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 1, 42, 43, 50, 65, 75, 76 NR band n78	F _{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA band 1	F _{DL_low}	-	F _{DL_high}	-50	1	8, 9
	Frequency range	758	-	773	-32	1	4
	Frequency range	773	+ -	803	-50	1	
	Frequency range	2 570	-	2 575	+1,6	5	4, 5, 6
	Frequency range	2 575	-	2 595	-15,5	5	4, 5, 6
	Frequency range	2 595	-	2 620	-40	1	4, 5
DC_7_n78	E-UTRA Band 1, 3, 7, 8, 20, 28, 31, 32, 33, 34, 40, 50, 51, 65, 67, 68, 75, 76	F _{DL_low}	-	F _{DL_high}	-50	1	, -
	Frequency range	2 570	-	2 575	+1,6	5	4, 6, 6
	Frequency range	2 575	-	2 595	-15,5	5	4, 6, 6
	Frequency range	2 595	-	2 620	-40	1	4, 5
DC_8_n77	E-UTRA Band 1, 20, 28, 31, 32, 33, 34, 38, 40, 50, 51, 65, 67, 68, 69	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA band 3, 7, 41	F _{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 8	F _{DL_low}	_	F _{DL_high}	-50	1	4
	Frequency range	860	-	890	-40	1	4, 11
	Frequency range	1 884,5	-	1 915,7	-41	0,3	3, 11
DC_8_n78	E-UTRA Band 1, 20, 28, 34, 40, 65	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 3, 7, 41	F _{DL_low}	-	F _{DL_high}	-50	1	2
	E-UTRA Band 8	F _{DL_low}	-	F _{DL_high}	-50	1	4
	Frequency range	860	_	890	-40	1	4, 11
	Frequency range	1 884,5	-	1 915,7	-41	0,3	3, 11
DC_20_n8	E-UTRA Band 1, 28, 31, 32, 34, 65, 75, 76	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 3, 7, 22, 38, 42, 43 NR band n78		-	F _{DL_high}	-50	1	2
DC_20_n28	E-UTRA Band 3, 7, 8, 31, 34, E-UTRA Band 1, 22, 32, 38, 42,	F _{DL_low}	-	F_{DL_high}	-50	1	
	43, 65, 75, 76 NR Band n78	F _{DL_low}	-	F_{DL_high}	-50	1	2

	Spurious emission										
EN-DC Configuration	Protected band	Maximum Level (dBm)	MBW (MHz)	Note							
DC_20_n78	E-UTRA Band 1, 3, 7, 8, 31, 32, 33, 34, 40, 65, 67, 68	F_{DL_low}	-	F_{DL_high}	-50	1					
	E-UTRA Band 20	F _{DL_low}	-	F _{DL_high}	-50	1	4				
	E-UTRA Band 38, 69	F _{DL_low}	-	F _{DL_high}	-50	1	2				
DC_28_n77	E-UTRA Band 3, 7, 8, 20, 34, 40, 41	F _{DL_low}	-	F _{DL_high}	-50	1					
	E-UTRA Band 1, 65	F _{DL_low}	-	F _{DL_high}	-50	1	2				
	E-UTRA Band 1	F _{DL_low}	-	F _{DL_high}	-50	1	8, 10				
	Frequency range	758	-	773	-32	1					
	Frequency range	773	-	803	-50	1					
	Frequency range	1 884,5	-	1 915,7	-41	0,3	3,8				
DC_28_n78	E-UTRA Band 3, 7, 8, 20, 34, 40, 41	F _{DL_low}	-	F _D L_high	-50	1					
	E-UTRA Band 1, 65	F_{DL_low}	-	F _{DL_high}	-50	1	2				
	E-UTRA Band 1	F _{DL_low}	-	F _{DL_high}	-50	1	8, 10				
	Frequency range	758	-	773	-32	1					
	Frequency range	773	-	803	-50	1					
	Frequency range	1 884,5	-	1 915,7	-41	0,3	3,8				
DC_38_n78	N/A										
DC_41_n77	E-UTRA Band 1, 3, 8, 28, 33, 34, 40	F _{DL_low}	-	F _{DL_high}	-50	1					
	Frequency range	1 884,5		1 915,7	-41	0.3	3				
DC_41_n78	E-UTRA Band 1, 3, 8, 28, 34, 40	F _{DL_low}	-	F _{DL_high}	-50	1					
	Frequency range	1 884,5	-	1,915,7	-41	0.3	3				

- NOTE 1: F_{DL_low} and F_{DL_high} refer to each frequency band specified in Table 5.5-1 of ETSLTS 136 101 [14] or in Table 5.2-1 in ETSLTS 138 101-1[6].
- NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 in ETSI TS 136 101 [14] and Table 4.1.2.6.1.2.1-1 are permitted for each assigned carrier used in the measurement due to 2nd, 3rd, 4th or 5th harmonic spurious emissions. Due to the spreading of the harmonic emission, the exception is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission. This results in an overall exception interval centred at the harmonic emission of (2 MHz + N × LCRB × 180 kHz), where N is 2, 3, 4, 5 for the 2nd, 3rd, 4th or 5th harmonic respectively. The exception is allowed if the Measurement Bandwidth (MBW) totally or partially overlaps the overall exception interval.
- NOTE 3: Applicable when co-existence with PHS system operating in 1 884,5 MHz 1 915,7 MHz.
- NOTE 4: These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 4.1.2.6.1.2.1-0 and Table 4.2.4.1.2-1 of ETSI EN 301 908-13 [12] from the edge of the channel bandwidth.
- NOTE 5: This requirement is applicable for any channel bandwidths within the range 2 500 MHz 2 570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2 560,5 MHz 2 562,5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2 552 MHz 2 560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 6: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.
- NOTE 7: This requirement is applicable for any channel bandwidths within the range 1 920 MHz 1 980 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1 927,5 MHz 1 929,5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1 930 1 938 MHz the requirement is applicable only for an uplink.
- NOTE 8: Applicable when the assigned E-UTRA carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.
- NOTE 9: As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned E-UTRA carrier used in the measurement due to 2nd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.3.1-1 of ETSI TS 138 521-1 [1]) for which the 2nd harmonic totally or partially overlaps the Measurement Bandwidth (MBW).
- NOTE 10: As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned E-UTRA carrier used in the measurement due to 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.3.1-1 of ETSI TS 138 521-1 [1]) for which the 3rd harmonic totally or partially overlaps the Measurement Bandwidth (MBW).

	Spurious emission								
EN-DC Configuration	Protected band	Frequency range (MHz)	Maximum Level	MBW (MHz)	Note				
			(dBm)						

- NOTE 11: This requirement is applicable only for the following cases: A: for carriers of 5 MHz channel bandwidth when carrier centre frequency (Fc) is within the range 902,5 MHz ≤ Fc < 907,5 MHz with an uplink transmission bandwidth less than or equal to 20 RB;B: for carriers of 5 MHz channel bandwidth when carrier centre frequency (Fc) is within the range 907,5 MHz ≤ Fc ≤ 912,5 MHz without any restriction on uplink transmission bandwidth; C: for carriers of 10 MHz channel bandwidth when carrier centre frequency (Fc) is Fc = 910 MHz with an uplink transmission bandwidth less than or equal to 32 RB with RBstart > 3.
- NOTE 12: This requirement is applicable for 5 and 10 MHz E-UTRA or NR channel bandwidth allocated within 718 MHz 728 MHz. For carriers of 10 MHz bandwidth, this requirement applies for an uplink transmission bandwidth less than or equal to 30 RB with RBstart > 1 and RBstart < 48.
- NOTE 13: This requirement is applicable for any channel bandwidths within the range 1 920 MHz 1 980 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1 927,5 MHz 1 929,5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1 930 MHz 1 938 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
- NOTE 14: This requirement is applicable in the case of a 10 MHz E-UTRA or NR carrier confined within 703 MHz and 733 MHz, otherwise the requirement of -25 dBm with a measurement bandwidth of 8 MHz applies.
 - NOTE 2: To simplify the above table, E-UTRA band numbers are listed for bands which are specified only for E-UTRA operation or both E-UTRA and NR operation in ETSI TS 138 101-1 [6] or ETSI TS 136 101 [14]. NR band numbers are listed for bands which are specified only for NR operation.

4.3.2.6.2.3.2.3 Additional Spurious Emissions

No exception requirements are applicable to NR or LTE. LTE anchor agnostic approach is applied.

Same limits as in clause 4.1.2.6.1.2.3 for the NR carrier.

4.3.2.6.2.3.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.5.2.3 of the present document.

4.3.2.6.2.4 Transmitter Spurious Emissions for Inter-Band EN-DC including FR2

4.3.2.6.2.4.1 Definition

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions unless otherwise stated. The spurious emission limits are specified in terms of general requirements in line with Recommendation ITU-R SM.329 [i.4] and NR operating band requirement to address UE co-existence. Spurious emissions are measured as TRP. To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth. The requirement is verified in beam locked mode with the test metric of TRP (Link=TX beam peak direction, Meas=TRP grid).

4.3.2.6.2.4.2 Limits

4.3.2.6.2.4.2.1 General spurious emissions

LTE anchor agnostic approach is applied as defined in clause 4.3.2.1. Same limits as in clause 4.2.2.6.1.2.1 for the NR carrier.

4.3.2.6.2.4.2.2 Spurious emission band UE co-existence

LTE anchor agnostic approach is applied as defined in clause 4.3.2.1.

Same limits as in clause 4.2.2.6.1.2.2.

4.3.2.6.2.4.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.5.2.4 of the present document.

4.3.2.6.2.5 Transmitter Spurious Emissions for Inter-Band EN-DC including both FR1 and FR2

4.3.2.6.2.5.1 Definition

Same as in clause 4.3.2.6.2.3.1 and clause 4.3.2.6.2.4.1.

4.3.2.6.2.5.2 Limits

The FR1 conducted and FR2 radiated requirements are tested separately. The NSA limits/requirements apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 4.3.2.6.2.3.2 and clause 4.3.2.6.2.4.2 respectively. LTE anchor agnostic approach is applied as defined in clause 4.3.2.1.

4.3.2.6.2.5.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.5.2.5 of the present document.

4.3.2.7 Receiver Reference Sensitivity Level

- 4.3.2.7.1 Void
- 4.3.2.7.2 Receiver Reference Sensitivity for EN-DC
- 4.3.2.7.2.0 General

For EN-DC, E-UTRA and NR single carrier REFSENS requirements defined in ETSI TS 138 101-1 [6], ETSI TS 138 101-2 [7], ETSI TS 138 101-3 [8] and ETSI TS 136 101 [14] apply to all downlink bands of EN-DC configurations listed in clause 5.5B in ETSI TS 138 521-3 [3], unless sensitivity degradation exception is allowed in clause 4.3.2.7.2, clause 7.3 in ETSI TS 138 101-1 [6] or clause 7.3 in ETSI TS 136 101 [14]. Allowed exceptions specified in this clause also apply to any higher-order EN-DC configuration combination containing one of the band combinations that exception is allowed for. Reference sensitivity exceptions are specified by applying Maximum Sensitivity Degradation (MSD) into applicable REFSENS requirement. EN-DC REFSENS requirements shall be met for NR uplink transmissions using QPSK DFT-s-OFDM waveforms as defined in clause 7.3.2 in ETSI TS 138 101-1 [6]. Unless otherwise specified UL allocation uses the lowest SCS allowable for a given channel BW. Limits on configured maximum output power for the uplink according to clause 6.2B.4 in ETSI TS 138 101-3 [8] shall apply.

In the case of interband EN-DC, the receiver REFSENS requirements in this clause do not apply for 1,4 and 3 MHz E-UTRA carriers. For the case of inter-band EN-DC with a single carrier per cell group and multi-carrier per cell group, in addition to the E-UTRA and NR single carrier, CA, and MIMO operation of REFSENS requirements defined in ETSI TS 138 101-1 [6], ETSI TS 138 101-2 [7] and ETSI TS 138 101-3 [8], and ETSI TS 136 101 [14], the REFSENS requirements specified therein also apply with both downlink carriers and both uplink carriers active unless sensitivity exceptions are allowed in this clause of the present document, clause 7.3 in ETSI TS 138 101-1 [6] or clause 7.3 in ETSI TS 136 101 [14].

NOTE: For inter-band EN-DC, the reference sensitivity requirement with both uplink carriers active is allowed to be verified for only a single inter-band EN-DC configuration per NR band.

4.3.2.7.2.1 Void

4.3.2.7.2.2

4.3.2.7.2.3 Receiver Reference Sensitivity for Inter-Band EN-DC within FR1

4.3.2.7.2.3.1 Definition

Void

The reference sensitivity power level REFSENS is the minimum mean power applied to each one of the UE antenna ports for all UE categories, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

4.3.2.7.2.3.2 Limits

4.3.2.7.2.3.2.1 Limits for inter-band without exceptions

For EN-DC with non-exception requirements applicable to NR, the LTE anchor agnostic approach is applied.

For inter-band EN-DC configurations, the throughput of each CG shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in clause A.3.2 of ETSI TS 138 521-1 [1] with reference receive power level specified in Table 4.1.2.7.1.2-1 and Table 4.1.2.7.1.2-2.

For the UE which supports inter-band EN-DC, the minimum requirement for reference sensitivity in Table 4.1.2.7.1.2-1 and Table 4.1.2.7.1.2-2 for NR band and Table 4.2.12.1.2-1 of ETSI EN 301 908-13 [12] - for E-UTRA band, shall be increased by the amount given in $\Delta R_{IB,c}$ defined in clause 4.3.2.7.3.4.

4.3.2.7.2.3.2.2 Limits for inter-band with exceptions

For EN-DC combination with exception requirements, LTE anchor agnostic approach is not applied.

For inter-band EN-DC configurations affected by reference sensitivity exceptions, when test points without notes 6, 7 and 9 in Table 5.3.3.6.2.3.1.2.1-1 are tested, the throughput of each CG shall be \geq 95 % of the maximum throughput for the reference receive power level specified in Table 4.3.2.7.2.3.2.2-1, Table 4.3.2.7.2.3.2.2-2, Table 4.3.2.7.2.3.2.2-3, and Table 4.3.2.7.2.3.2.2-4 for MSDs due to uplink harmonic, harmonic mixing, cross-band isolation and dual uplinks, respectively. For a given EN-DC combo, if more than one category of MSD applies, UE shall pass all requirement.

For test points with notes 6 or 7 in Table 5.3.3.6.2.3.1.2.1-1, reference sensitivity requirements are specified in Table 4.1.2.7.1.2-1 for the NR CC, and Table 4.2.12.1.2-1 of ETSI EN 301 908-13 [12] for E-UTRA CC.

Reference sensitivity exceptions due to UL harmonic interference for EN-DC in NR FR1 are specified in Table 4.3.2.7.2.3.2.2-1 with the uplink configuration specified in Table 5.3.3.6.2.3.1.2.1-1.

Table 4.3.2.7.2.3.2.2-1: Reference sensitivity due to UL harmonic for EN-DC in NR FR1

UL	DL band	scs	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
band		(kHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
	n77	15		-70,4	-70,4	-70,3			-70,2	-70,3		70.0	70.0	
	(notes 1	30		-70,7	-70,5	-70,5			-70,3	-70,4	-70,4	-70,3	-70,3	-70,3
1, 3	notes 1 and 7)	60		-71,1	-70,8	-70,7			-70,5	-70,5	-70,5	-70,4	-70,4	-70,4
1, 5	n77	15		-93,2	-91,7	-90,9								
	(note 2)	30		-93,5	-91,8	-91,1								
	(Hote 2)	60		-93,9	-92,1	-91,3			-					
				-70,9	-70,9	-70,8			-70,7	-70,8				
		15		-73,1	-73,1	-73,0			-72,9	-73,0				
	n78			(note 9)	(note 9)	(note 9)			(note 9)	(note 9)				
	11/6			-71,2	-71,0	-71,0			-70,8	-70,9	-70,9	-70,8	-70,8	-70,8
	notes 1	30		-73,4	-73,2	-73,2			-73,0	-73,1	-73,1	-73,0	-73,0	-73,0
	and 7)			(note 9)	(note 9)	(note 9)			(note 9)					
	anu 1)			-71,6	-71,3	-71,2			-71,0	-71,0	-71,0	-70,9	-70,9	-70,9
		60		-73,8	-73,5	-73,4			-73,2	-73,2	-73,2	-73,1	-73,1	-73,1
3				(note 9)	(note 9)	(note 9)			(note 9)					
3				-93,7	-92,2	-91,4								
		15		-95,9	-93,4	-93,6								
				(note 9)	(note 9)	(note 9)								
	n78			-94,0	-92,3	-91,6			-					
	(note 2)	30		-96,2	-94,5	-93,8								
	(Hote 2)			(note 9)	(note 9)	(note 9)								
				-94,4	-92,6	-91,8			-					
		60		-96,6	-94,8	-94,0								
				(note 9)	(note 9)	(note 9)								
	n77	15		-83,5	-83,4	-83,2			-83,0	-82,9				
	(notes 5	30		-83,8	-83,5	-83,4			-83,1	-83,0	-82,9	-82,8	-82,5	-82,7
8	and 6)			-84,2	-83,8	-83,6			-83,3	-83,1	-83,0	-82,9	-82,6	-82,8
	n78	60												
	(notes 5	00												
	and6)													
	n77	15		-83,9	-83,6	-83,4			-83,4	-83,4				
	(notes 3	30		-84,2	-83,7	-83,6			-83,5	-83,5	-83,4	-83,4	-83,4	-83,4
00	and 4)			-84,6	-84,0	-83,8			-83,7	-83,6	-83,5	-83,5	-83,5	-83,5
28	n78	00												
	(notes 3	60												
	and													
	4)											1	1	
	1 (notes 7													
n28	(notes 7, 8	15	-89,1	-88,7	-88,3	-88,0								
	and 9)													
	anu 9)					1								

UL	DL band	SCS	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
band		(kHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)

- NOTE 1: The requirements should be verified for UL EARFCN or NR ARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \lfloor f_{DL}^{HB} / 0.2 \rfloor 0.1$ in MHz and $F_{UL_low}^{LB} + B W_{Channel}^{LB} / 2 \le f_{UL_high}^{LB} \le F_{UL_high}^{LB} B W_{Channel}^{LB} / 2$ with a carrier frequency in the victim (higher) band in MHz and the channel bandwidth configured in the lower band.
- NOTE 2: The requirements are only applicable to channel bandwidths no larger than 20 MHz and with a carrier frequency at $^{\pm}$ $(20 + BW_{Channel}^{HB} / 2)$ MHz offset from $^2f_{UL}^{LB}$ in the victim (higher band) with $^{F_{UL_{low}}} + BW_{Channel}^{LB} / 2 \le f_{UL}^{LB} \le F_{UL_{high}}^{LB} BW_{Channel}^{LB} / 2$, where $^{BW_{Channel}^{LB}}$ and $^{BW}_{Channel}^{HB}$ are the channel bandwidths configured in the aggressor (lower) and victim (higher) bands in MHz, respectively.
- NOTE 3: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 5th transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band.
- NOTE 4: The requirements should be verified for UL EARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \left\lfloor f_{DL}^{BB} / 0.5 \right\rfloor 0.1$ in MHz and $F_{UL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{UL_high}^{LB} \le F_{UL_high}^{LB} BW_{Channel}^{LB} / 2$ with a carrier frequency in the victim (higher) band in MHz and the channel bandwidth configured in the lower band.
- NOTE 5: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 4th transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band.
- NOTE 6: The requirements should be verified for UL EARFCN of the aggressor (lower) band (superscript LB) such that $f_{UL}^{LB} = \left\lfloor f_{DL}^{BB} / 0.4 \right\rfloor 0.1$ in MHz and $F_{UL_low}^{LB} + B W_{Channel}^{LB} / 2 \le f_{UL_high}^{LB} \le F_{UL_high}^{LB} B W_{Channel}^{LB} / 2$ with a carrier frequency in the victim (higher) band in MHz and the channel bandwidth configured in the lower band.
- NOTE 7: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (lower) band for which the 2nd transmitter harmonic is within the downlink transmission bandwidth of a victim (higher) band and a range ΔFHD above and below the edge of this downlink transmission bandwidth. The value ΔFHD depends on the EN-DC band combination: ΔFHD = 10 MHz for DC_1_n77, DC_3_n77, DC_28_n51 and DC_3_n78.
- NOTE 8: MSD test point can be chosen according to supported BW and lowest SCS supported by the UE.
- NOTE 9: Applicable only if operation with 4 antenna ports is supported in the band with EN-DC configured.

Reference sensitivity exceptions due to receiver harmonic mixing for EN-DC in NR FR1, are specified in Table 4.3.2.7.2.3.2.2-2 with the uplink configuration specified in Table 5.3.3.6.2.3.1.2.1-1.

Table 4.3.2.7.2.3.2.2-2: Reference sensitivity due to receiver harmonic mixing for EN-DC in NR FR1

UL band	DL band	SCS (kHz)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	25 MHz (dBm)	40 MHz (dBm)	50 MHz (dBm)	60 MHz (dBm)	80 MHz (dBm)	90 MHz (dBm	100 MHz (dBm)
n77	28 (note 2)	N/A	-69,8	-69,8	-69,8	-68,3							
		N/A	-90,6	-89,3	-88,5	-87,6							
n77	3		-93,3	-92,0	-91,2	-90,3							
			(note 5)	(note 5)	(note 5)	(note 5)							
		N/A	-90,6	-89,3	-88,5	-87,6						-	
n78	3		-93,3	-92,0	-91,2	-90,3							
			(note 5)	(note 5)	(note 5)	(note 5)							
n77	41 (note 3)	N/A	-86,9	-83,9	-82,1	-80,9					-	I	
n78	41 (note 3)	N/A	-86,9	-83,9	-82,1	-80,9						1	

- NOTE 1: These requirements apply when there is at least one individual RE within the uplink transmission bandwidth of the aggressor (higher) band for which the mixing product due to harmonic of victim (lower) band LO with leakage of aggressor (higher) band is within the downlink transmission bandwidth of a victim (lower) band.
- NOTE 2: The requirements should be verified for DL EARFCN of the victim (lower) band (superscript LB) such that $f_{DL}^{LB} = \left \lfloor f_{UL}^{HB} / 0.5 \right \rfloor 0.1$ in MHz and $F_{DL_low}^{LB} + BW_{Channel}^{LB} / 2 \le f_{DL_high}^{LB} \le F_{DL_high}^{LB} BW_{Channel}^{LB} / 2$ with f_{DL}^{LB} carrier frequency in the victim (lower) band in MHz and the channel bandwidth configured in the lower band.
- NOTE 3: The requirements should be verified for DL EARFCN of the victim (lower) band (superscript LB) such that $f_{DL}^{LB} = [f_{UL}^{HB}/0.15]0.1$ with f_{DL}^{LB} the DL carrier frequency in the lower band and f_{UL}^{HB} the UL carrier frequency in the higher band, both in MHz.
- NOTE 4: MSD test point can be chosen according to supported BW and lowest SCS supported by the UE.
- NOTE 5: Applicable only if operation with 4 antenna ports is supported in the band with EN-DC configured.

Reference sensitivity exceptions due to cross band isolation for EN-DC in NR FR1, are specified in Table 4.3.2.7.2.3.2.2-3 with the uplink configuration specified in Table 5.3.3.6.2.3.12.1-1.

Table 4.3.2.7.2.3.2.2-3: Reference sensitivity exceptions due to cross band isolation for EN-DC in NR FR1

	E-UTRA or NR Band / Channel bandwidth of the affected DL band													
UL band	DL band	SCS (kHz)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	25 MHz (dBm)	30 MHz (dBm)	40 MHz (dBm)	50 MHz (dBm)	60 MHz (dBm)	80 MHz (dBm)	90 MHz (dBm)	100 MHz (dBm)
n77	41	N/A	-92,8	-89,8	-88,0	-86,8								
41	n77 (note 4)	30		-86,3	-84,3	-83,1			-81,9	-81,9	-81,9		-81,1	-80,7
n78	7 (note 1)	N/A	-93,5	-90,5	-88,7	-87,5								
n78	38	N/A	-96,7	-93,7	-91,9	-90,7								
n78	41	N/A	-92,8	-89,8	-88,0	-86,8								
41	n78	30		-86,8	-84,8	-83,6			-82,4	-82,4	-82,4		-81,6	-81,2

NOTE 1: Applicable only when harmonic mixing MSD for this combination is not applied.

NOTE 2: The DL victim band should be configured using the lowest SCS that is compatible with the highest CBW for which an MSD is specified.

NOTE 3: MSD test point can be chosen according to supported BW and lowest SCS supported by the UE.

NOTE 4: The requirement is modified by -0,5 dB when the assigned UE channel bandwidth is confined within 3 300 MHz - 3 800 MHz.

Reference sensitivity exceptions due to dual uplink operation for EN-DC in NR FR1, are specified in Table 4.3.2.7.2.3.2.2-4 with the uplink configuration specified in Table 5.3.3.6.2.3.1.2.1-1.

Table 4.3.2.7.2.3.2.2-4: Reference sensitivity exceptions due to dual uplink operation for EN-DC in NR FR1 (two bands)

			NR or E-UTRA Band / Channel bandwidth								
EN-DC Configuration	E-UTRA or NR band	SCS (kHz)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm))	20 MHz (dBm)	40 MHz (dBm)	IMD order)	Duplex mode		
DC_1A_n77A	1	N/A	-69,5 					IMD2 (note 3)	FDD		
	n77	15		REFSENS				N/A	TDD		
DC_1A_n77A DC_1A_n78A,	1	N/A	-91,3 -					IMD4	FDD		
	n77,n78	15	-	REFSENS				N/A	TDD		

				NR or	E-UTRA Band /	Channel band	width		
EN-DC Configuration	E-UTRA or NR band	SCS (kHz)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm))	20 MHz (dBm)	40 MHz (dBm)	IMD order)	Duplex mode
	3	N/A	REFSENS					N/A	FDD
DC_3A_n7A	n7	15	-	-83,9 (note 5)				IMD4	FDD
DC_3A_n77A, DC_3A_n78A,	3	N/A	-70,3					IMD2 (note 3)	FDD
DC_3C_n78A	n77, n78	15	-	REFSENS				N/A	TDD
DC_3A_n77A, DC_3A_n78A,	3	N/A	-88,3					IMD4 (note 3)	FDD
DC_3C_n78A	n77, n78	15		REFSENS				N/A	TDD
DC_8A_n77A	8	N/A	-88,0					IMD4	FDD
DC_8A_n78A	n77, n78	15		REFSENS				N/A	TDD
DC 20A =0A	20	N/A	-71,3					IMD3	FDD
DC_20A_n8A	n8	15	-71,3					IMD3	FDD
DC_20A_n78A,	20	N/A	-85,3					IMD4	FDD
,	n78	15		REFSENS				N/A	TDD
DC_28A_n77A,	28	N/A	-92,3					IMD5	FDD
DC_28A_n78A,	n77, n78	15		REFSENS				N/A	TDD

NOTE 1: E-UTRA carrier shall be set to min(+20 dBm, P_{CMAX_L_E-UTRA,c}) and NR carrier shall be set to min(+20 dBm, P_{CMAX_L,f,c,NR}) as defined in clause 6.2B.4.1.3 of ETSI TS 138 521-3 [3].

NOTE 2: RB_{START} = 0.

NOTE 3: This band is subject to IMD5 also which MSD is not specified.

NOTE 4: Applicable only if operation with 4 antenna ports is supported in the band with EN-DC configured.

NOTE 5: The symbol "REFSENS" in this table refers to the reference sensitivity values for single carrier specified in Table 4.2.12.1.2-1 of ETSI EN 301 908-13 [12] for 2 antenna port E-UTRA band, Table 7.3.1.5-1 of ETSI TS 136 521-1 [11] for 4 antenna port E-UTRA band, Table 4.1.2.7.1.2-2 for 4 antenna port NR band.

NOTE 6: For NR band, UL/DL BW and UL LCRB can be adjusted according to the supported BW and lowest SCS supported by the UE.

4.3.2.7.2.3.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.6.2.3 of the present document.

4.3.2.7.2.4 Void

4.3.2.7.2.4 Receiver Reference Sensitivity for Inter-Band EN-DC including FR2

4.3.2.7.2.4.1 Definition

Unless otherwise stated, the receiver characteristics are specified Over The Air (OTA).

The minimum requirements on Effective Isotropic Sensitivity (EIS) are defined with two orthogonal polarizations.

The reference sensitivity power level REFSENS is the EIS level (total component) at the centre of the quiet zone in the RX beam peak direction, at which the throughput shall meet or exceed the requirements for the specified reference measurement channel. The requirement is verified with the test metric of EIS (Link=RX beam peak direction, Meas=Link Angle).

4.3.2.7.2.4.2 Limits

LTE anchor agnostic approach is applied as defined in clause 4.3.2.1. Same limits as in clause 4.2.2.7.1.2 for the NR carrier.

4.3.2.7.2.4.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.6.2.4 of the present document.

4.3.2.7.2.5 Receiver Reference Sensitivity for Inter-Band EN-DC including both FR1 and FR2

4.3.2.7.2.5.1 Definition

Same as in clause 4.3.2.7.2.3.1 and clause 4.3.2.7.2.4.1.

4.3.2.7.2.5.2 Limits

The FR1 conducted and FR2 radiated requirements are tested separately. The NSA limits/requirements apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 4.3.2.7.2.3.2 and clause 4.3.2.7.2.4.2 respectively. LTE anchor agnostic approach is applied as defined in clause 4.3.2.1.

4.3.2.7.2.5.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.6.2.5 of the present document.

4.3.2.7.3 $\Delta R_{IB,C}$, ΔR_{IBNC} for EN-DC

4.3.2.7.3.1 General

For the UE which supports inter-band EN-DC configuration, the minimum requirement for reference sensitivity in Table 7.3.1-1 and Table 7.3.1-1a in ETSI TS 136 101 [14], clauses 7.3.2, 7.3A.2, 7.3C.2 in ETSI TS 138 101-1 [6] and clause 7.3.2, 7.3A.2 in ETSI TS 138 101-2 [7] shall be increased by the amount given in $\Delta R_{IB,c}$, ΔR_{IBNC} in Table 4.3.2.7.3.4.1-1 where unless otherwise stated, the same $\Delta R_{IB,c}$, ΔR_{IBNC} are applicable to NR band(s) part for DC configurations which have the same NR operating band combination. Unless otherwise stated, $\Delta R_{IB,c}$ or ΔR_{IBNC} is set to zero.

In case the UE supports more than one of the band combinations for CA, SUL or DC, and an operating band belongs to more than one band combinations, then:

- When the operating band frequency range is \leq 1 GHz, the applicable additional $\Delta R_{IB,c}$ shall be the average value for all band combinations defined in clause 7.3A, 7.3B, 7.3C in ETSI TS 138 521-3 [3] and 7.3A, 7.3B in ETSI TS 138 101-3 [8], truncated to one decimal place that applies for that operating band among the supported band combinations. In case there is a harmonic relation between low band UL and high band DL, then the maximum $\Delta R_{IB,c}$ among the different supported band combinations involving such band shall be applied.
- When the operating band frequency range is > 1 GHz, the applicable additional $\Delta R_{IB,c}$ shall be the maximum value for all band combinations defined in clauses 7.3A, 7.3B, 7.3C in ETSI TS 138 521-3 [3] and clauses 7.3A, 7.3B in ETSI TS 138 101-3 [8] for the applicable operating bands.

Unless $\Delta R_{IB,c}$ is specified for the NE-DC configuration, the specified $\Delta R_{IB,c}$ for the EN-DC configuration including the same bands as the corresponding NE-DC configuration is applicable for the NE-DC configuration.

4.3.2.7.3.2	Void
4.3.2.7.3.3	Void
4.3.2.7.3.4	$\Delta R_{\text{IB,c}}$ for Inter-band EN-DC within FR1
4.3.2.7.3.4.1	ΔR _{IB.c} for Inter-band EN-DC in two bands within FR1

Table 4.3.2.7.3.4.1-1: ΔR_{IB.c} due to EN-DC(two bands)

Inter-band EN-DC configuration	E-UTRA or NR Band	ΔR _{IB,c} (dB)
DC_1_n28	n28	0,2
DC 1 x77	1	0,2
DC_1_n77	n77	0,5
DC_1_n78	n78	0,5
DC_3_n77	3	0,2
DC_3_II/1	n77	0,5
DC_3_n78	3	0,2
	n78	0,5
DC_7_n77	n77	0,5
DC_7_n78 DC_7-7_n78	n78	0,5
DC 9 n77	8	0,2
DC_8_n77	n77	0,5
DC_8_n78	3	0,2
	n78	0,5
DC_20_n78	n78	0,5
DC_28_n77	28	0,2
DC_28_11/1	n77	0,5
DC_28_n78	28	0,2
DC_20_11/0	n78	0,5
DC_38_n78	38	0,4
	n78	0,5
DC_41_n77	n77	0,5
DC_41_n78	n78	0,5

4.3.2.8 Receiver Adjacent Channel Selectivity (ACS)

4.3.2.8.1 Void

4.3.2.8.2 Receiver Adjacent Channel Selectivity for EN-DC

4.3.2.8.2.1 Void

4.3.2.8.2.2 Void

4.3.2.8.2.3 Receiver Adjacent Channel Selectivity for Inter-Band EN-DC within FR1

4.3.2.8.2.3.1 Definition

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive an NR and E-UTRA signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

4.3.2.8.2.3.2 Limits

No exception requirements are applicable to NR or LTE. LTE anchor agnostic approach is applied.

Same limits as in clause 4.1.2.8.1.2 for the NR carrier.

4.3.2.8.2.3.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.7.2.3 of the present document.

4.3.2.8.2.4 Void

4.3.2.8.2.4 Receiver Adjacent Channel Selectivity for Inter-Band EN-DC including FR2

4.3.2.8.2.4.1 Definition

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive a NR signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

The requirement applies at the RIB when the AoA of the incident wave of the wanted signal and the interfering signal are both from the direction where peak gain is achieved.

The wanted and interfering signals apply to all supported polarizations, under the assumption of polarization match.

4.3.2.8.2.4.2 Limits

LTE anchor agnostic approach is applied as defined in clause 4.3.2.1. Same limits as in clause 4.2.2.8.1.2 for the NR carrier.

4.3.2.8.2.4.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.7.2.4 of the present document.

4.3.2.8.2.5 Receiver Adjacent Channel Selectivity for Inter-Band EN-DC including both FR1 and FR2

4.3.2.8.2.5.1 Definition

Same as in clause 4.3.2.8.2.3.1 and clause 4.3.2.8.2.4.1.

4.3.2.8.2.5.2 Limits

The FR1 conducted and FR2 radiated requirements are tested separately. The NSA limits/requirements apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 4.3.2.8.2.3.2 and clause 4.3.2.8.2.4.2 respectively. LTE anchor agnostic approach is applied as defined in clause 4.3.2.1.

4.3.2.8.2.5.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.7.2.5 of the present document.

4.3.2.9	Receiver Blocking Characteristics		
4.3.2.9.1	Void		
4.3.2.9.2	Receiver Blocking Characteristics for EN-DC		
4.3.2.9.2.1	Void		
4.3.2.9.2.2	Void		
4.3.2.9.2.3	Blocking for Inter-Band EN-DC within FR1		

4.3.2.9.2.3.1 Definition

The blocking characteristic for EN-DC in FR1 is a measure of the receiver's ability of an UE that supports EN-DC in FR1 to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occurs.

4.3.2.9.2.3.2 Limits

4.3.2.9.2.3.2.1 In-band blocking

No exception requirements are applicable to NR or LTE. LTE anchor agnostic approach is applied.

Same limits as in clause 4.1.2.9.1.2.1 for the NR carrier.

4.3.2.9.2.3.2.2 Out-of-band blocking

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

Out-of-band blocking requirements for E-UTRA single carrier and CA operation specified in clauses 4.2.7.1 and 4.2.7.2 of ETSI EN 301 908–13 [12] and for NR single carrier operation specified in clause 4.1.2.9.1 apply for lowest level EN-DC fallbacks (two bands) with the following conditions:

- one E-UTRA uplink carrier with the output power set to 4 dB below $P_{CMAX_L,c}$ and the NR band whose downlink is being tested has its uplink carrier output power set to 29 dB below $P_{CMAX_L,f,c}$.
- one NR uplink carrier with the output power set to 4 dB below P_{CMAX_L,f,c} on the NR band with both E-UTRA and NR downlinks being tested with E-UTRA output power set to 29 dB below P_{CMAX_L,c}.

If CW interferer falls in a gap between F_{DL_high} of the E-UTRA or NR band and F_{DL_low} of the NR or E-UTRA band, where the corresponding OOB ranges 1 and 2 overlap, then the lower level interferer limit of the overlapping OOB ranges applies.

If F_{DL_high} of the lower E-UTRA or NR band is greater than or equal to the F_{DL_low} of the upper NR or E-UTRA band as in overlapping RX frequency ranges, then the OOB range shall start from the F_{DL_low} of the lower E-UTRA or NR band, and from the F_{DL_high} of the upper NR or E-UTRA band.

For EN-DC combination listed in Table 4.3.2.9.2.3.2.2-1 under the first test condition above, exceptions to the requirement specified in Table 4.3.2.9.2.3.2.2-2 are allowed when the second-order intermodulation product of the lower frequency band UL carrier and the CW interfering signal fully or partially overlaps with the higher frequency band DL carrier.

Table 4.3.2.9.2.3.2.2-1: EN-DC combination with exceptions allowed

EN-DC combination
DC_8_n77
DC_8_n78
DC_20_n78
DC_28_n77
DC_28_n78

Table 4.3.2.9.2.3.2.2-2: Exceptions allowed

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44 ¹
where f_{UL}^{LB} and f_{DL}^{HB} and higher frequency bar	Hies when $ f_{Interferer} \pm f_{UL}^{LB} - f_{DI}^{H}$ are the carrier frequencies for lowered DL, respectively. BW_{UL}^{LB} and BW_{UL}^{LB} and UL can be for lower frequency band UL can be described.	er frequency band UL and V_{DL}^{HB} are the channel

For each of the two test cases in clauses 4.2.7.1 and 4.2.7.2 of ETSI EN 301 908–13 [12] and for NR single carrier specified in clause 4.1.2.9.1 for all interferer frequency ranges a maximum of:

$$[max\{24,6 \cdot [n \cdot N_{RB}/6]\}/min\{[n \cdot N_{RB}/10], 5\}]$$

Exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a step size of $\min(\lfloor CBW / 2 \rfloor, 5)$ MHz with N_{RB} the number of resource blocks in the downlink transmission bandwidth configuration, CBW the bandwidth of the frequency channel in MHz and n = 1, 2, 3 for SCS = 15, 30, 60 kHz, respectively. For these exceptions, the requirements in clause 4.3.2.10.2.3 apply.

4.3.2.9.2.3.2.3 Narrow band blocking

No exception requirements are applicable to NR or LTE. LTE anchor agnostic approach is applied.

Same limits as in clause 4.1.2.9.1.2.3 for the NR carrier.

4.3.2.9.2.1.3.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.8.2.3 of the present document.

4.3.2.9.2.4 Void

4.3.2.9.2.4 Receiver Blocking for Inter-Band EN-DC including FR2

4.3.2.9.2.4.1 Definition

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occurs. The requirement is verified with the test metric of EIS (Link=RX beam peak direction, Meas=Link angle).

The requirement applies at the RIB when the AoA of the incident wave of the wanted signal and the interfering signal are both from the direction where peak gain is achieved.

The wanted and interfering signals apply to all supported polarizations, under the assumption of polarization match.

4.3.2.9.2.4.2 Limits

LTE anchor agnostic approach is applied as defined in clause 4.3.2.1. Same limits as in clause 4.2.2.9.1.2 for the NR carrier.

4.3.2.9.2.4.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.8.2.4 of the present document.

4.3.2.9.2.5 Receiver Blocking for Inter-Band EN-DC including both FR1 and FR2

4.3.2.9.2.5.1 Definition

Same as in clause 4.3.2.9.2.3.1 and clause 4.3.2.9.2.4.1.

4.3.2.9.2.5.2 Limits

The FR1 conducted and FR2 radiated requirements are tested separately. The NSA limits/requirements apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 4.3.2.9.2.3.2 and clause 4.3.2.9.2.4.2 respectively. LTE anchor agnostic approach is applied as defined in clause 4.3.2.1.

4.3.2.9.2.5.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.8.2.5 of the present document.

4.3.2.10 Receiver Spurious Response

4.3.2.10.1 Void

4.3.2.10.2 Receiver Spurious Response for EN-DC

4.3.2.10.2.1 Void

4.3.2.10.2.2 Void

4.3.2.10.2.3 Receiver Spurious Response for Inter-Band EN-DC within FR1

4.3.2.10.2.3.1 Definition

Spurious response is a measure of the ability of the receiver to receive a wanted signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency for which a response is obtained, i.e. for which the out-of-band blocking limit as specified in clause 4.3.2.9.2.3.2.2 is not met.

The lack of the spurious response ability decreases the coverage area when another unwanted interfering signal exists at any other frequency.

4.3.2.10.2.3.2 Limits

Exception requirements for both NR and E-UTRA are defined for this test and therefore LTE anchor agnostic approach is not applied. E-UTRA test point analysis is included and E-UTRA measurements are performed.

Spurious response requirement for E-UTRA single carrier and CA operation specified in clauses 4.2.8.1 and 4.2.8.2 of ETSI EN 301 908–13 [12] and for NR single carrier specified in clauses 4.1.2.10 apply for lowest level EN-DC fallbacks (two bands) with the following conditions:

- one E-UTRA uplink carrier with the output power set to 4 dB below P_{CMAX_L,c} and the NR band whose downlink is being tested has its uplink carrier output power set to 29 dB below P_{CMAX_L,f,c};
- one NR uplink carrier with the output power set to 4 dB below $P_{CMAX_L,f,c}$ on the NR band with both E-UTRA and NR downlinks being tested with E-UTRA output power set to 29 dB below $P_{CMAX_L,c}$.

4.3.2.10.2.3.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.9.2.3 of the present document.

4.3.2.10.2.4	Void
4.J.Z. IU.Z.4	volu

4.3.2.10.2.5 Receiver Spurious Response for Inter-Band EN-DC including both FR1 and FR2

4.3.2.10.2.5.1 Definition

Same as in clause 4.3.2.10.2.3.1.

4.3.2.10.2.5.2 Limits

The FR1 conducted requirements are tested separately. The NSA limits/requirements apply and are tested as part of the EN-DC within FR1 in clause 4.3.2.10.2.3.2. LTE anchor agnostic approach is applied as defined in clause 4.3.2.1.

4.3.2.10.2.5.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.9.2.5 of the present document.

4.3.2.11 Receiver Intermodulation Characteristic

4.3.2.11.1 Void

4.3.2.11.2 Wideband Intermodulation for EN-DC

4.3.2.11.2.1 Void

4.3.2.11.2.2 Void

4.3.2.11.2.3 Wideband Intermodulation for Inter-Band EN-DC within FR1

4.3.2.11.2.3.1 Definition

Intermodulation response rejection is a measure of the capability of the receiver to receiver a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal

4.3.2.11.2.3.2 Limits

No exception requirements are applicable to NR or LTE. LTE anchor agnostic approach is applied.

Same limits as in clause 4.1.2.11.1.2 for the NR carrier.

4.3.2.11.2.3.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.10.2.3 of the present document.

4.3.2.11.2.4 Void

4.3.2.11.2.5 Receiver Intermodulation for Inter-Band EN-DC including both FR1 and FR2

4.3.2.11.2.5.1 Definition

Same as in clause 4.3.2.11.2.3.1.

4.3.2.11.2.5.2 Limits

The FR1 conducted requirements are tested separately. The NSA limits/requirements apply and are tested as part of the EN-DC within FR1 test cases in clause 4.3.2.11.2.3.2. LTE anchor agnostic approach is applied as defined in clause 4.3.2.1.

4.3.2.11.2.5.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.10.2.5 of the present document.

4.3.2.12 Receiver Spurious Emissions

4.3.2.12.1 Void

4.3.2.12.2 Receiver Spurious Emissions for EN-DC

4.3.2.12.2.1 Void

4.3.2.12.2.2 Void

4.3.2.12.2.3 Receiver Spurious Emissions for Inter-Band EN-DC within FR1

4.3.2.12.2.3.1 Definition

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

4.3.2.12.2.3.2 Limits

No exception requirements are applicable to NR or LTE. LTE anchor agnostic approach is applied.

Same limits as in clause 4.1.2.12.1.2.

4.3.2.12.2.3.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.11.2.3 of the present document.

4.3.2.12.2.4 Receiver Spurious Emissions for Inter-Band EN-DC including FR2

4.3.2.12.2.4.1 Definition

The spurious emissions power is the power of emissions generated or amplified in a receiver. The spurious emissions power level is measured as TRP. The requirement is verified in beam locked mode with the test metric of TRP (Link= TX beam peak direction, Meas=TRP grid).

4.3.2.12.2.4.2 Limits

LTE anchor agnostic approach is applied as defined in clause 4.3.2.1. Same limits as in clause 4.2.2.10.1.2 for the NR carrier.

4.3.2.12.2.4.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.11.2.4 of the present document.

4.3.2.12.2.5 Receiver Spurious Emissions for Inter-Band EN-DC including both FR1 and FR2

4.3.2.12.2.5.1 Definition

Same as in clause 4.3.2.12.2.3.1 and clause 4.3.2.12.2.4.1.

4.3.2.12.2.5.2 Limits

The FR1 conducted and FR2 radiated requirements are tested separately. The NSA limits/requirements apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 4.3.2.12.2.3.2 and clause 4.3.2.12.2.4.2 respectively. LTE anchor agnostic approach is applied as defined in clause 4.3.2.1.

4.3.2.12.2.5.3 Conformance

The conformance tests for this requirement shall be as defined in clause 5.3.3.11.2.5 of the present document.

5 Testing for compliance with technical requirements

5.1 Testing for compliance with technical requirements for Frequency Range 1

5.1.1 Environmental conditions for testing

Tests defined in the present document shall be carried out at representative points within the boundary limits of the operational environmental profile defined by its intended use.

Where technical performance varies subject to environmental conditions, tests shall be carried out under a sufficient variety of environmental conditions (within the boundary limits of the operational environmental profile defined by its intended use) to give confidence of compliance for the affected technical requirements.

All tests shall be conducted using normal test conditions except where otherwise stated. For guidance on the use of other conditions to be used in order to show compliance reference can be made to ETSI TS 138 521-1 [1], clause F.1.1.

5.1.2 Interpretation of the measurement results

The interpretation of the results recorded in a test report for the measurements described in the present document shall be as follows:

- the measured value related to the corresponding limit will be used to decide whether an equipment meets the requirements of the present document;
- the value of the measurement uncertainty for the measurement of each parameter shall be included in the test report.

For the test methods, according to the present document, the measurement uncertainty figures shall be calculated and shall correspond to an expansion factor (coverage factor) k = 1,96 (which provide a confidence level of respectively 95 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)). Principles for the calculation of measurement uncertainty are contained in ETSI TR 100 028 [i.5], in particular in annex C of the ETSI TR 100 028-2 [i.5]. For guidance on other measurement conditions reference can be made to annexes A to H of ETSI TS 138 521-1 [1].

Recommended values for the maximum measurement uncertainty based on this expansion factor can be found in annex D.

5.1.3 Essential radio test suites

5.1.3.0 General

This clause describes the test suites that shall be used for 5G-NR frequency range 1.

5.1.3.1 Transmitter Maximum Output Power

5.1.3.1.1 Transmitter Maximum Output Power for Single Carrier

5.1.3.1.1.1 Method of test

5.1.3.1.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in Table 5.1.3.1.1.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 of ETSI TS 138 521-1 [1]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-1 [1].

Table 5.1.3.1.1.1-1: Test Configuration Table

Initial Conditions				
Test Environment as specified in ETSI TS 138 508-1 [4], clause 4.1		Normal, TL/VL, TL/VH, TH/VL, T	H/VH	
Test Frequencies as specified in ETSI TS 138 508-1 [4], clause 4.3.1		Low range, Mid range, High range		
Test Channel Bandwidths as specified in ETSI TS 138 508-1 [4], clause 4.3.1		Lowest, Mid, Highest (note 3)		
Test SCS as spe	ecified in Table 1.1-6	Lowest, Highest		
	Test Parameters			
Test ID	Downlink Configuration	Uplink Configuration		
	N/A for maximum output	Modulation (note 2)	RB allocation (note 1)	
1	power test case	DFT-s-OFDM PI/2 BPSK	Inner Full	
2		DFT-s-OFDM PI/2 BPSK	Inner 1RB Left	
3		DFT-s-OFDM PI/2 BPSK	Inner 1RB Right	
4		DFT-s-OFDM QPSK	Inner Full	
5		DFT-s-OFDM QPSK	Inner 1RB Left	
6		DFT-s-OFDM QPSK	Inner 1RB Right	
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 of ETSLTS 138 521-1 [1]. NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1. NOTE 3: For band n28, the Highest test channel bandwidth is replaced by 20 MHz due to MPR is always larger than 0 dB for 30 MHz bandwidth.				

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- Downlink signals are initially set up according to clauses C.0, C.1, C.2 of ETSI TS 138 521-1 [1], and uplink signals according to clauses G.0, G.1, G.2 and G.3.0 of ETSI TS 138 521-1 [1].
- 4) The UL Reference Measurement Channel is set according to Table 5.1.3.1.1.1.1.
- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-1 [1].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.2.1.4.3 of ETSI TS 138 521-1 [1].

5.1.3.1.1.1.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.1.1.1.1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2) Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3) Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration of one active sub-frame (1 ms) and in the uplink symbols. For TDD symbols with transient periods are not under test.
- 4) For UEs supporting Power Class 2, repeat steps 1~3 on the applicable bands with message exception of P-Max defined in Table 6.2.1.4.3-2 in ETSI TS 138 521-1 [1].

5.1.3.1.1.2 Test requirements

The results obtained shall be compared to the limits in clause 4.1.2.2.1.2 in order to show compliance.

5.	1	.3.	.1	.2	V	oic	ł
v.		· U			v	OIL	

5.1.3.1.3 Void

5.1.3.1.4 Void

5.1.3.1.5 Transmitter Maximum Output Power for UL-MIMO

5.1.3.1.5.1 Method of test

5.1.3.1.5.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in Table 5.1.3.1.5.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 of ETSI TS 138 521-1 [1]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-1 [1].

Table 5.1.3.1.5.1.1-1: Test Configuration Table for 2-layer UL MIMO

Initial Conditions			
N/A			
Test Parameters for Channel Bandwidths			
N/A			

NOTE: No test points are defined since there is no configuration satisfying MPR=0 dB. .

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.1.2 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1, C.2 of ETSI TS 138 521-1 [1], and uplink signals according to clauses G.0, G.1, G.2 and G.3.0 of ETSI TS 138 521-1 [1].
- 4) The UL Reference Measurement Channel is set according to Table 5.1.3.1.5.1.1-1.
- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-1 [1].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.2D.1.4.3 of ETSI TS 138 521-1 [1].

5.1.3.1.5.1.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.1.5.1.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in ETSI TS 138 508-1 [4], clause 4.3.6.1.1.2.
- 2) Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.

3) Measure the sum of the mean power of the UE at each transmit antenna connector in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration of 1 ms over all active uplink slots and in the uplink symbols. For TDD slots only slots consisting of only UL symbols are under.

5.1.3.1.5.2 Test requirements

The results obtained shall be compared to the limits in clause 4.1.2.2.5.2 in order to show compliance.

NOTE: No test points are defined in this release.

5.1.3.2 Transmitter Minimum Output Power

5.1.3.2.1 Transmitter Minimum Output Power for Single Carrier

5.1.3.2.1.1 Method of test

5.1.3.2.1.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in Table 5.1.3.2.1.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clauses A.2 of ETSI TS 138 521-1 [1]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-1 [1].

Table 5.1.3.2.1.1.1-1: Test Configuration Table

Initial Conditions				
Test Environmer	nt as specified in ETSI TS 138 508-1 [4]	Normal, TL/VL, TL/VH, TH/VL,	TH/VH	
clause 4.1				
Test Frequencies as specified in ETSI TS 138 508-1 [4]		Low range, Mid range, High range (note 2)		
clause 4.3.1				
Test Channel Bandwidths as specified in ETSI		Lowest, Mid, Highest		
TS 138 508-1 [4]				
Test SCS as specified in Table 1.1-6		Highest		
	Test Parameters for	Channel Bandwidths		
Test ID Downlink Configuration		Uplink Configuration		
	N/A for minimum output power	Modulation	RB allocation (note 1)	
1 test case		DFT-s-OFDM QPSK	Outer Full	
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 of ETSI TS 138 521-1 [1].				
NOTE 2: For NR band n28, 30 MHz test channel bandwidth is tested with Low range and High range test				
freque	frequencies.			

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1, C.2 of ETSI TS 138 521-1 [1], and uplink signals according to clauses G.0, G.1, G.2 and G.3.0 of ETSI TS 138 521-1 [1].
- 4) The UL Reference Measurement Channel is set according to Table 5.1.3.2.1.1.1-1.
- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-1 [1].
- 6) Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.3.1.4.3. of ETSI TS 138 521-1 [1].

5.1.3.2.1.1.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.2.1.1.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2) Send continuously uplink power control "down" commands in every uplink scheduling information to the UE; allow at least 200 ms starting from the first TPC command in this step to ensure that the UE transmits at its minimum output power.
- 3) Measure the mean power of the UE in the associated measurement channel bandwidth specified in Table 4.1.2.3.1.2-1 for the specific channel bandwidth under test. The period of measurement shall be at least the continuous duration of one active sub-frame (1 ms) and in the uplink symbols. For TDD slots with transient periods are not under test.

5.1.3.2.1.2 Test requirements

The results obtained shall be compared to the limits in clause 4.1.2.3.1.2 in order to show compliance.

5.1.3.2.2	Void
5.1.3.2.3	Void
5.1.3.2.4	Void

5.1.3.2.5 Transmitter Minimum Output Power for UL-MIMO

5.1.3.2.5.1 Method of test

5.1.3.2.5.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in Table 5.1.3.2.5.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 of ETSI TS 138 521-1 [1]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-1 [1].

Table 5.1.3.2.5.1.1-1: Test Configuration Table

Initial Conditions				
Test Environmen	nt as specified in ETSI TS 138 508-1 [4]	Normal, TL/VL, TL/VH, TH/VL, TH/VH		
clause 4.1				
Test Frequencies as specified in ETSI TS 138 508-1 [4]		Low range, Mid range, High range		
clause 4.3.1				
	ndwidths as specified in ETSI	Lowest, Mid, Highest		
TS 138 508-1 [4]	clause 4.3.1			
Test SCS as specified in Table 1.1-6		Lowest, Highest		
Test Parameters for Channel Bandwidths				
Test ID	Downlink Configuration	juration		
	N/A for minimum output power	Modulation	RB allocation (note)	
1	test case	CP-OFDM QPSK	Outer Full	
NOTE: The specific configuration of each RB allocation is defined in Table 6.1-1 of ETSI TS 138 521-1 [1].				

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4] annex A, Figure A.3.1.1.2 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.

- 3) Downlink signals are initially set up according to clauses C.0, C.1, C.2 of ETSI TS 138 521-1 [1], and uplink signals according to clauses G.0, G.1, G.2 and G.3.0 of ETSI TS 138 521-1 [1].
- 4) The UL Reference Measurement Channel is set according to Table 5.1.3.2.5.1.1-1.
- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-1 [1].
- 6) Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.3D.1.4.3 of ETSI TS 138 521-1 [1].

5.1.3.2.5.1.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.2.5.1.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in ETSI TS 138 508-1 [4], clause 4.3.6.1.1.2.
- 2) Send continuously uplink power control "down" commands in every uplink scheduling information to the UE; allow at least 200 ms starting from the first TPC command in this step to ensure that the UE transmits at its minimum output power.
- 3) Measure the sum of the mean power of the UE at each UE antenna connector in the associated measurement channel bandwidth specified in Table 4.1.2.3.1.2-1 for the specific channel bandwidth under test. The period of measurement shall be at least the continuous duration of 1 ms over all active uplink slots and in the uplink symbols. For TDD, only slots consisting of only UL symbols are under test.

5.1.3.2.5.2 Test requirements

The results obtained shall be compared to the limits in clause 4.1.2.3.5.2 in order to show compliance.

5.1.3.3 Transmitter Spectrum Emission Mask

5.1.3.3.1 Transmitter Spectrum Emission Mask for Single Carrier

5.1.3.3.1.1 Method of test

5.1.3.3.1.1.1 General spectrum emission mask

5.1.3.3.1.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, which are shown in Tables 5.1.3.3.1.1.1-1, 5.1.3.3.1.1.1.1-2, and 5.1.3.3.1.1.1.1-3. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 of ETSI TS 138 521-1 [1]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-1 [1].

Table 5.1.3.3.1.1.1-1: Test Configuration Table for power class 3 (contiguous allocation)

	Default Conditions						
			fied in ETS	Normal			
				SI TS 138 508-1 [4], clause 4.3.1	Low range, High range Lowest, Highest		
clause		nawiaths a	as specifie	d in ETSI TS 138 508-1 [4],	Lowest, riigilest		
	CS as spe	cified in Ta	able 1.1-6		Lowest, Highest		
	•		Te	est Parameters for Channel Bar	ndwidths		
Test ID	Freq	ChBw	SCS	Downlink Configuration	Uplink Configuration		
		Default	Default	N/A for Spectrum Emission Mask test case	Modulation (note 2)	RB allocation (note 1)	
1 note 3	Low				DFT-s-OFDM PI/2 BPSK	Edge_1RB_Left	
2 note 3	High				DFT-s-OFDM PI/2 BPSK	Edge_1RB_Right	
3 note 3	Default				DFT-s-OFDM PI/2 BPSK	Outer_Full	
4 note 4	Low				DFT-s-OFDM PI/2 BPSK	Edge_1RB_Left	
5 note 4	High				DFT-s-OFDM PI/2 BPSK	Edge_1RB_Right	
6 note 4	Default				DFT-s-OFDM PI/2 BPSK	Outer_Full	
7	Low				DFT-s-OFDM QPSK	Edger_1RB_Left	
8	High				DFT-s-OFDM QPSK	Edge_1RB_Right	
9	Default				DFT-s-OFDM QPSK	Outer_Full	
10	Low				DFT-s-OFDM 16 QAM	Edge_1RB_Left	
11	High				DFT-s-OFDM 16 QAM	Edge_1RB_Right	
12	Default				DFT-s-OFDM 16 QAM	Outer_Full	
13	Low				DFT-s-OFDM 64 QAM	Edge_1RB_Left	
14	High				DFT-s-OFDM 64 QAM	Edge_1RB_Right	
15	Default				DFT-s-OFDM 64 QAM	Outer_Full	
16	Low				DFT-s-OFDM 256 QAM	Edge_1RB_Left	
17	High				DFT-s-OFDM 256 QAM	Edge_1RB_Right Outer_Full	
18	Default				DFT-s-OFDM 256 QAM	-	
19	Low				CP-OFDM QPSK	Edge_1RB_Left Edge_1RB_Right	
20	High				CP-OFDM QPSK CP-OFDM	Outer_Full	
21	Default Low				QPSK CP-OFDM 16	Outer_Full Edge_1RB_Left	
23					QAM CP-OFDM 16	Edge_1RB_Left Edge_1RB_Right	
24	High Default				QAM CP-OFDM 16	Outer_Full	
25	Low				QAM CP-OFDM 64	Edge_1RB_Left	
26	High				QAM CP-OFDM 64	Edge_1RB_Right	
27	Default				QAM CP-OFDM 64	Outer_Full	
	Doladit				QAM QAM	Gator_r un	

28	Low	CP-OFDM	Edge_1RB_Left
		256 QAM	
29	High	CP-OFDM	Edge_1RB_Right
		256 QAM	
30	Default	CP-OFDM	Outer_Full
		256 QAM	
31	Low	DFT-s-OFDM	Edge_1RB_Left
notes		Pi/2 BPSK w	· ·
5&6		Pi/2 BPSK	
		DMRS	
32	High	DFT-s-OFDM	Edge_1RB_Right
notes		Pi/2 BPSK w	
5&6		Pi/2 BPSK	
		DMRS	
33	Default	DFT-s-OFDM	Outer Full
notes		Pi/2 BPSK w	
5&6		Pi/2 BPSK	
		DMRS	ļ

- NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1 of ETSI TS 138 521-1 [1].
- NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.
- NOTE 3: UE operating in TDD mode with Pi/2 BPSK modulation and UE indicates support for UE capability
- powerBoosting-pi2BPSK and the IE powerBoostPi2BPSK is set to 1 for bands n40, n41, n77 andn78.

 NOTE 4: UE operating in FDD mode, or in TDD mode in bands other than n40, n41, n77 and n78, or in TDD mode the IE powerBoostPi2BPSK is set to 0 for bands n40, n41, n77 and n78.
- NOTE 5: For Power Class 3 testing, UE operating in FDD mode, or in TDD mode in bands other than n40, n41, n77 and n78, or in TDD mode the IE powerBoostPi2BPSK is set to 0 for bands n40, n77 and n78.
- NOTE 6: Applicable to UEs indicating support for UE capability lowPAPR-DMRS-PUSCHwithPrecoding-r16.

Table 5.1.3.3.1.1.1.2: Test Configuration Table for power class 2 (contiguous allocation)

	Initial Conditions						
Test Envir	ronment as spe	ecified in ETSI TS 138 508-1 [4],	Normal				
clause 4.1			1				
Test Frea	uencies as spe	cified in ETSI TS 138 508-1 [4],	Low range, High range				
clause 4.3.1							
		s as specified in ETSI	Lowest, Highest				
)8-1 [4], clause		, 3				
	as specified in		Lowest, Highest				
	•	Test Parameters for	Channel Bandwidths				
Test ID	Freq	Downlink Configuration	Uplink Conf	iguration			
		N/A	Modulation (note 2)	RB allocation (note 1)			
1	Low		DFT-s-OFDM Pi/2 BPSK	Edge_1RB_Left			
2	High		DFT-s-OFDM Pi/2 BPSK	Edge_1RB_Right			
3	Default		DFT-s-OFDM Pi/2 BPSK	Outer Full			
4	Low		DFT-s-OFDM QPSK	Edge_1RB_Left			
5	High		DFT-s-OFDM QPSK	Edge_1RB_Right			
6	Default		DFT-s-OFDM QPSK	Outer Full			
7	Low		DFT-s-OFDM 16 QAM	Edge_1RB_Left			
8	High		DFT-s-OFDM 16 QAM	Edge_1RB_Right			
9	Default		DFT-s-OFDM 16 QAM	Outer Full			
10	Low		DFT-s-OFDM 64 QAM	Edge_1RB_Left			
11	High		DFT-s-OFDM 64 QAM	Edge_1RB_Right			
12	Default		DFT-s-OFDM 64 QAM	Outer Full			
13	Low		DFT-s-OFDM 256 QAM	Edge_1RB_Left			
14	High		DFT-s-OFDM 256 QAM	Edge_1RB_Right			
15	Default		DFT-s-OFDM 256 QAM	Outer Full			
16	Low		CP-OFDM QPSK	Edge_1RB_Left			
17	High		CP-OFDM QPSK	Edge_1RB_Right			
18	Default		CP-OFDM QPSK	Outer Full			
19	Low		CP-OFDM 16 QAM	Edge_1RB_Left			
20	High		CP-OFDM 16 QAM	Edge_1RB_Right			
21	Default		CP-OFDM 16 QAM	Outer Full			
22	Low		CP-OFDM 64 QAM	Edge_1RB_Left			
23	High		CP-OFDM 64 QAM	Edge_1RB_Right			
24	Default		CP-OFDM 64 QAM	Outer Full			
25	Low		CP-OFDM 256 QAM	Edge_1RB_Left			
26	High		CP-OFDM 256 QAM	Edge_1RB_Right			
27	Default		CP-OFDM 256 QAM	Outer Full			
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 of ETSLTS 138 521-1 [1].							

NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 of ETSI TS 138 521-1 [1]. NOTE 2: DFT-s-OFDM Pi/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1. NOTE 3: It is essential that all test points in this table also exist in Table 6.2.2.4.1-2 of ETSI TS 138 521-1 [1].

Table 5.1.3.3.1.1.1.3: Test Configuration Table for power class 2&3 (almost contiguous allocation)

Initial Conditions						
t as specif	fied in ETSI TS 138 508-1 [4],	Normal				
Test Frequencies as specified in ETSI TS 138 508-1 [4], clause 4.3.1		Low range, High range				
	•	Highest				
cified in Ta	able 1.1-6	Lowest, Highest				
Test Parameters for Channel Bandwidths						
q	Downlink Configuration	Uplink Confi	guration			
	N/A	Modulation	RB allocation (note 1)			
ult		CP-OFDM QPSK	Inner Full			
ult		CP-OFDM QPSK	Outer Full			
ult		CP-OFDM 16 QAM	Inner Full			
ult		CP-OFDM 16 QAM	Outer Full			
ult		CP-OFDM 64 QAM	Outer Full			
Default CP-OFDM 256 QAM Outer Full						
TE 1: The specific configuration of each RB allocation is defined in Table 6.5.2.2.4.1-4 of ETSLTS 138 521-1 [1].						
	•					
	ndwidths and a specified in T	tas specified in ETSI TS 138 508-1 [4], s as specified in ETSI TS 138 508-1 [4], individths as specified in ETSI l, clause 4.3.1 individiths as specified in ETSI l, clause 4.3.1 individit in Table 1.1-6 Test Parameters for Downlink Configuration N/A Inult	tas specified in ETSI TS 138 508-1 [4], Normal s as specified in ETSI TS 138 508-1 [4], Low range, High range Individths as specified in ETSI I, clause 4.3.1 Icified in Table 1.1-6 Individual Table 1.1-6			

1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.

support almost contiguous UL CP-OFDM transmissions, test is only applicable for Release 16 and forward.

- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1, C.2 of ETSI TS 138 521-1 [1], and uplink signals according to clauses G.0, G.1, G.2 and G.3.0 of ETSI TS 138 521-1 [1].
- 4) The UL Reference Measurement channels are set according to Table 5.1.3.3.1.1.1.1-1.
- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-1 [1].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.5.2.2.4.3 of ETSI TS 138 521-1 [1].

5.1.3.3.1.1.1.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.3.1.1.1-1, Table 5.1.3.3.1.1.1.1-2 and Table 5.1.3.3.1.1.1.1-3. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2) Send continuously power control "up" commands to the UE until the UE transmits at the P_{UMAX} level. Allow at least 200 ms for the UE to reach the P_{UMAX} level.
- 3) Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in tables 6.2.2.5-1 to 6.2.2.5-9 of ETSI TS 138 521-1 [1]. The period of the measurement shall be at least the continuous duration of 1 ms over consecutive active uplink slots. For TDD, only slots consisting of only UL symbols are under test.
- 4) Measure the power of the transmitted signal with a measurement filter of bandwidths according to tables 4.1.2.4.1.2.1-1 and 4.1.2.4.1.2.1-2. The centre frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration Table 5.1.3.3.1.1.1.1-1 and Table 5.1.3.3.1.1.1.1-2, send an NR RRCReconfiguration message according to ETSI TS 138 508-1 [4] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

NOTE 2: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

5.1.3.3.1.1.2 Additional spectrum emission mask

5.1.3.3.1.1.2.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in clause 6.2.3.4.1 of ETSI TS 138 521-1 [1]. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 of ETSI TS 138 521-1 [1]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-1 [1].

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4] annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1, C.2 of ETSI TS 138 521-1 [1] and uplink signals according to clauses G.0, G.1, G.2 and G.3.0 of ETSI TS 138 521-1 [1].
- 4) The UL Reference Measurement channels are set according to the applicable test configuration table in clause 6.2.3.4.1 of ETSI TS 138 521-1 [1].
- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-1 [1].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.5.2.3.4.3 of ETSI TS 138 521-1 [1].

5.1.3.3.1.1.2.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to the applicable test configuration table in clause 6.2.3.4.1 of ETSI TS 138 521-1 [1]. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2) Send continuously uplink power control "up" commands in the uplink scheduling information to the UE. Allow at least 200 ms starting from the first TPC command in this step for the UE to reach the P_{UMAX} level.
- 3) Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in the applicable table in clause 4.1.2.4.1.2.2. The period of measurement shall be at least the continuous duration of one sub-frame (1 ms). For TDD slots with transient periods are not under test.
- 4) Measure the power of the transmitted signal with a measurement filter of bandwidths according to the applicable test configuration table. The centre frequency of the filter shall be stepped in continuous steps according to the applicable test requirement table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration Table 6.2.3.4.1-1 through 6.2.3.4.1-2 of ETSI TS 138 521-1 [1], send an NR RRCReconfiguration message according to ETSI TS 138 508-1 [4], clause 4.6.3, Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

NOTE 2: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

5.1.3.3.1.2 Test requirements

The results obtained shall be compared to the limits in clause 4.1.2.4.1.2 in order to show compliance.

5.1.3.3.2	Void
5.1.3.3.3	Void
5.1.3.3.4	Void
5.1.3.3.5	Transmitter Spectrum Emission Mask for UL-MIMO
5.1.3.3.5.1	Method of test
5.1.3.3.5.1.1	General spectrum emission mask
5.1.3.3.5.1.1.1	Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in Table 5.1.3.3.5.1.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 of ETSI TS 138 521-1 [1]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-1 [1].

Table 5.1.3.3.5.1.1.1-1: Test Configuration Table

	Default Conditions						
Test Environment as specified in ETSI TS 138 508-1 [4],				Normal			
clause 4.1							
Test Frequencies as specified in ETSI TS 138 508-1 [4],					Low range, High range		
clause 4.3.1							
Test Chan	nel Bandv	vidths as s	specified in	n ETSI	Lowest, Highest		
TS 138 50							
Test SCS	as specifie	ed in Table			Lowest and Highest		
				arameters for Chanr			
Test ID	Freq	ChBw	SCS	Downlink	Uplink Cor	nfiguration	
				Configuration		<u> </u>	
		Default	Default	N/A for Spectrum	Modulation	RB allocation (note)	
1	Low			Emission Mask test	CP-OFDM QPSK	Edge_1RB_Left	
2	High			case	CP-OFDM QPSK	Edge_1RB_Right	
3	Default				CP-OFDM QPSK	Outer_Full	
4	Low				CP-OFDM 16 QAM	Edge_1RB_Left	
5	High				CP-OFDM 16 QAM	Edge_1RB_Right	
6	Default				CP-OFDM 16 QAM	Outer_Full	
7	Low				CP-OFDM 64 QAM	Edge_1RB_Left	
8	High				CP-OFDM 64 QAM	Edge_1RB_Right	
9	Default				CP-OFDM 64 QAM	Outer_Full	
10	Low				CP-OFDM 256 QAM	Edge_1RB_Left	
11	High				CP-OFDM 256 QAM	Edge_1RB_Right	
12	Default				CP-OFDM 256 QAM	Outer_Full	
NOTE:	The speci	ific configu	ration of e	each RB allocation is	defined in Table 6.1-1 of	ETSI TS 138 521-1 [1].	

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.1.2 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1, C.2 of ETSI TS 138 521-1 [1], and uplink signals according to clauses G.0, G.1, G.2, G.3.0 of ETSI TS 138 521-1 [1].
- 4) The UL Reference Measurement channels are set according to Table 5.1.3.3.5.1.1.1-1.
- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-1 [1].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.5D.2.2.4.3 of ETSI TS 138 521-1 [1].

5.1.3.3.5.1.1.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.3.5.1.1.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in ETSI TS 138 508-1 [4], clause 4.3.6.1.1.2.
- 2) Send continuously power control "up" commands to the UE until the UE transmits at the P_{UMAX} level. Allow at least 200 ms for the UE to reach the P_{UMAX} level.
- 3) Measure the sum of the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration according to the requirements described in tables 6.2D.2.5-1 or 6.2D.2.5-2 of ETSI TS 138 521-1 [1]. The period of the measurement shall be at least the continuous duration of one active sub-frame (1 ms) and in the uplink symbols. For TDD, slots consisting of UL symbols only are under test.
- 4) Measure the power of the transmitted signal at each antenna connector with a measurement filter of bandwidths according to limit tables in clause 4.1.2.4.5.2.1. The centre frequency of the filter shall be stepped in continuous steps according to the same Table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.

5.1.3.3.5.1.2 Additional spectrum emission mask

5.1.3.3.5.1.2.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in Table 5.1.3.3.5.1.2.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 of ETSI TS 138 521-1 [1]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-1 [1].

Table 5.1.3.3.5.1.2.1-1: Test Configuration Table for NS_04 for band n41

	Initial Conditions						
Test Er	nvironment as specified in ETSITS			rmal			
	equencies as specified in ETSI TS 1		1 (Se	e Freg column)			
	nannel Bandwidths as specified in E		,				
clause	•	2 27	Lov	Lowest, Highest			
Test S0	CS as specified in Table 1.1-6		Lov	vest, Highest			
	•	Test parameters for N	IS_04	-			
Downlink Uplink Configuration					ıration		
Test	Freq	Configuration					
ID	1104		M	lodulation	RB allocation		
					(NOTE)		
1	Low			OFDM QPSK	Edge_1RB_Left		
2	2 496 + 3/2 × BW _{Channel} - 6 MHz			OFDM QPSK	Edge_1RB_Left		
3	2 496 + BW _{Channel} /2 +			OFDM QPSK	Inner Full		
4	MAX(10 MHz, 0,25 × BW _{Channel})	N/A		OFDM QPSK	Outer Full		
5	High			OFDM QPSK	Edge_1RB_Right		
6	High			OFDM QPSK	Inner Full		
7	High			OFDM QPSK	Outer Full		
8	Low			FDM 16 QAM	Edge_1RB_Left		
9	2 496 + 3/2 × BW _{Channel} - 6 MHz			FDM 16 QAM	Edge_1RB_Left		
10	2 496 + BW _{Channel} /2 +			FDM 16 QAM	Inner Full		
11	MAX(10 MHz, 0,25 × BW _{Channel})			FDM 16 QAM	Outer Full		
12	High			FDM 16 QAM	Edge_1RB_Right		
13	High			FDM 16 QAM	Inner Full		
14	High			FDM 16 QAM	Outer Full		
15	Low			FDM 64 QAM	Edge_1RB_Left		
16	2 496 + 3/2 × BW _{Channel} - 6 MHz		CP-C	FDM 64 QAM	Edge_1RB_Left		
17	2 496 + BW _{Channel} /2 + MAX(10 MHz, 0,25 × BW _{Channel})		CP-C	FDM 64 QAM	Outer Full		
18	High		CP-C	FDM 64 QAM	Edge_1RB_Right		
19	High		CP-C	FDM 64 QAM	Outer Full		
20	Low		CP-O	FDM 256 QAM	Edge_1RB_Left		
21	2 496 + 3/2 × BW _{Channel} - 6 MHz		CP-O	FDM 256 QAM	Edge_1RB_Left		
22	2 496 + BW _{Channel} /2 + MAX(10 MHz, 0,25 × BW _{Channel})		CP-O	FDM 256 QAM	Outer Full		
23	High		CP-O	FDM 256 QAM	Edge_1RB_Right		
24	High			FDM 256 QAM	Outer Full		
NOTE:	The specific configuration of each	h RB allocation is defined					

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.1.2 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1, C.2 of ETSI TS 138 521-1 [1], and uplink signals according to clauses G.0, G.1, G.2, G.3.0 of ETSI TS 138 521-1 [1].
- 4) The UL Reference Measurement channels are set according to tables 5.1.3.3.5.1.2.1-1.

- 5) Propagation conditions are set according to Annex B.0 of ETSI TS 138 521-1 [1].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release On, Test Mode On and Test Loop Function On according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.5D.2.3.4.3 of ETSI TS 138 521-1 [1].

5.1.3.3.5.1.2.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.3.5.1.2.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in ETSI TS 138 508-1 [4], clause 4.3.6.1.1.2.
- 2) Send continuously power control "up" commands to the UE until the UE transmits at P_{UMAX} level. Allow at least 200 ms for the UE to reach P_{UMAX} level.
- 3) Measure the sum of the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Tables 6.2D.3.5-1 or 6.2D.3.5-2 of ETSI TS 138 521-1 [1]. The period of the measurement shall be at least the continuous duration of 1 ms over consecutive active uplink slots and uplink symbols. For TDD, only slots consisting of only UL symbols are under test.
- 4) Measure the power of the transmitted signal at each antenna connector with a measurement filter of bandwidths according to limit tables in clause 4.1.2.4.5.2.2. The centre frequency of the filter shall be stepped in continuous steps according to the same Table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.

5.1.3.3.5.2 Test requirements

The results obtained shall be compared to the limits in clause 4.1.2.4.5.2 in order to show compliance.

5.1.3.4 Transmitter Adjacent Channel Leakage Power Ratio

5.1.3.4.1 Transmitter Adjacent Channel Leakage Power Ratio for Single Carrier

5.1.3.4.1.1 Method of test

5.1.3.4.1.1.1 NR ACLR

5.1.3.4.1.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in the test configuration tables in clause 6.2.2.4.1 of ETSI TS 138 521-1 [1]. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 of ETSI TS 138 521-1 [1]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-1 [1]:

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4] annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1, C.2 of ETSI TS 138 521-1 [1], and uplink signals according to clauses G.0, G.1, G.2 and G.3.0 of ETSI TS 138 521-1 [1].
- 4) The UL Reference Measurement channels are set according to the test configuration tables in clause 6.2.2.4.1 of ETSI TS 138 521-1 [1].

- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-1 [1].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.5.2.4.1.4.3 of ETSI TS 138 521-1 [1].

5.1.3.4.1.1.2 Procedure

- SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to the test configuration tables in clause 6.2.2.4.1 of ETSI TS 138 521-1 [1]. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2) Send continuously power control "up" commands to the UE until the UE transmits at the P_{UMAX} level. Allow at least 200 ms for the UE to reach the P_{UMAX} level.
- 3) Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, as measured in step 3 of 6.2.2.4.2 of ETSI TS 138 521-1 [1], which shall meet the requirements described in clause 6.2.2.5 of ETSI TS 138 521-1 [1] as appropriate.
- 4) Measure the rectangular filtered mean power for the assigned NR channel.
- 5) Measure the rectangular filtered mean power of the first NR adjacent channel on both the lower and upper side of the assigned NR channel, respectively.
- 6) Calculate the ratios of the power between the values measured in step 4 over step 5 for lower and upper NR ACLR, respectively.
- 7) For UEs supporting Power Class 2, repeat steps 1~6 for Test ID 22 and 36 in Table 6.2.2.4.1-1 of ETSI TS 138 521-1 [1] on the applicable bands with message exception of P-Max defined in Table 6.5.2.4.1.4.3-1 of ETSI TS 138 521-1 [1].
- 8) Void.

NOTE: When switching to DFT-s-OFDM waveform, as specified in the test configuration tables in clause 6.2.2.4.1 of ETSI TS 138 521-1 [1], send an NR RRCReconfiguration message according to ETSI TS 138 508-1 [4], clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

5.1.3.4.1.1.2 UTRA ACLR

5.1.3.4.1.1.2.1 Initial conditions

Same as in clause 6.2.3.4.1 of ETSI TS 138 521-1 [1] with the following exceptions:

- Only network signalling values NS_5U, NS_43U, and NS_100 with the corresponding band defined in Table 6.2.3.3.1-1 of ETSI TS 138 521-1 [1] need to perform the UTRA ACLR test.
- Message contents in step 6 are defined in clause 6.5.2.4.2.4.3 of ETSI TS 138 521-1 [1].

5.1.3.4.1.1.2.2 Procedure

- SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to the applicable test configuration table in clause 6.2.3.4.1 of ETSI TS 138 521-1 [1]. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2) Send continuously power control "up" commands to the UE until the UE transmits at the P_{UMAX} level. Allow at least 200 ms for the UE to reach the P_{UMAX} level.
- Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in clause 6.2.3.5 of ETSI TS 138 521-1 [1] as appropriate. The period of the measurement shall be at least the continuous duration of one active sub-frame (1 ms) and in the uplink symbols. For TDD slots with transient periods are not under test.

- 4) Measure the rectangular filtered mean power for the assigned NR channel.
- 5) Measure the RRC filtered mean power of the first and the second UTRA adjacent channel on both the lower and upper side of the NR channel, respectively.
- 6) Calculate the ratios of the power between the values measured in step 4 over step 5 for lower and upper UTRA ACLR, respectively.

NOTE: When switching to DFT-s-OFDM waveform, as specified in the test configuration Table 6.2.3.4.1-1 of ETSI TS 138 521-1 [1], send an NR RRCReconfiguration message according to ETSI TS 138 508-1 [4] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

5.1.3.4.1.2 Test requirements

The results obtained shall be compared to the limits in clause 4.1.2.5.1.2 in order to show compliance.

5.1.3.4.2	Void
5.1.3.4.3	Void
5.1.3.4.4	Void
5.1.3.4.5	Transmitter Adjacent Channel Leakage Power Ratio for UL-MIMO
5.1.3.4.5.1	Method of test
5.1.3.4.5.1.1	NR ACLR
5.1.3.4.5.1.1.1	Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in the test configuration tables in clause 6.2D.2.4.1 of ETSI TS 138 521-1 [1]. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 of ETSI TS 138 521-1 [1]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-1 [1]:

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.1.2 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1, C.2 of ETSI TS 138 521-1 [1], and uplink signals according to clauses G.0, G.1, G.2, G.3.0 of ETSI TS 138 521-1 [1].
- 4) The UL Reference Measurement channels are set according to the test configuration tables in clause 6.2D.2.4.1 of ETSI TS 138 521-1 [1].
- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-1 [1].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4] clause 4.5. Message contents are defined in clause 6.5D.2.4.1.4.3 of ETSI TS 138 521-1 [1]. (If UE supports ULFPTx. The PDCCH DCI format 0_1 is specified with the condition ULFPTx_Mode1, ULFPTx_Mode2 or ULFPTx_ModeFull in ETSI TS 138 508-1 [4], clause 4.3.6.1.1.2 depending on UE reported capability.)

5.1.3.4.5.1.1.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to the test configuration tables in clause 6.2D.2. 4 of ETSI TS 138 521-1 [1]. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in ETSI TS 138 508-1 [4], clause 4.3.6.1.1.2.
- 2) Send continuously power control "up" commands to the UE until the UE transmits at the P_{UMAX} level. Allow at least 200 ms for the UE to reach the P_{UMAX} level.
- 3) Measure the sum of the mean power of the UE at from both antenna connectors in the channel bandwidth of the radio access mode according to the test configuration, as measured in step 3 of clause 6.2D.2.4.2 of ETSI TS 138 521-1 [1], which shall meet the requirements described in clauses 6.2D.2.5 of ETSI TS 138 521-1 [1] as appropriate.
- 4) Measure the rectangular filtered mean power for the assigned NR channel at each antenna connector of UE.
- 5) Measure the rectangular filtered mean power of the first NR adjacent channel at each antenna connector of UE on both the lower and upper side of the assigned NR channel, respectively.
- 6) Calculate the ratios of the power between the values measured in step 4) over step 5) for lower and upper NR ACLR at each antenna connector of UE, respectively.

5.1.3.4.5.1.2 UTRA ACLR

5.1.3.4.5.1.2.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, which are shown in Table 5.1.3.4.5.1.2.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 of ETSI TS 138 521-1 [1]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-1 [1].

Table 5.1.3.4.5.1.2.1-1: Test Configuration Table for NS_03U

	Default Conditions						
				Normal			
clause 4.1							
Test Frequencies as specified in ETSI TS 138 508-1 [4]			Low range, High range				
clause 4.3.1							
		ıs as specifi	ied in ETS	I TS 138 508-1 [4]	Lowest, Highest		
clause 4.3.1							
Test SCS as	s specified in	Table 1.1-			Lowest, Highest		
				ameters for Channe			
Test ID	Freq	ChBw	SCS	Downlink	Uplink Co	nfiguration	
				Configuration		<u> </u>	
		Default	Default	N/A for Adjacent	Modulation	RB allocation (note)	
1	Low			Channel Leakage	CP-OFDM QPSK	Edge_1RB_Left	
2	High			Ratio test case	CP-OFDM QPSK	Edge_1RB_Right	
3	Default				CP-OFDM QPSK	Outer_Full	
4	Low				CP-OFDM 16 QAM	Edge_1RB_Left	
5	High				CP-OFDM 16 QAM	Edge_1RB_Right	
6	Default				CP-OFDM 16 QAM	Outer_Full	
7	Low				CP-OFDM 64 QAM	Edge_1RB_Left	
8	High				CP-OFDM 64 QAM	Edge_1RB_Right	
9	Default				CP-OFDM 64 QAM	Outer_Full	
10	Low				CP-OFDM 256 QAM	Edge_1RB_Left	
11	High				CP-OFDM 256 QAM	Edge_1RB_Right	
12	Default				CP-OFDM 256 QAM	Outer_Full	
NOTE: T							

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.1.2 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1, C.2 of ETSI TS 138 521-1 [1], and uplink signals according to clauses G.0, G.1, G.2 and G.3.0 of ETSI TS 138 521-1 [1].
- 4) The UL Reference Measurement channels are set according to Table 5.1.3.4.5.1.2.1-1.
- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-1 [1].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4] clause 4.5. Message contents are defined in clause 6.5D.2.4.2.4.3 of ETSI TS 138 521-1 [1].

5.1.3.4.5.1.2.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.4.5.1.2.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in ETSI TS 138 508-1 [4] clause 4.3.6.1.1.2.
- 2) Send continuously power control "up" commands to the UE until the UE transmits at the P_{UMAX} level. Allow at least 200 ms for the UE to reach the P_{UMAX} level.
- 3) Measure the sum of the mean power of the UE at each antenna connector in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in clause 6.2D.3.5 of ETSI TS 138 521-1 [1] as appropriate. The period of the measurement shall be at least the continuous duration of 1 ms over consecutive active uplink slots and uplink symbols. For TDD, only slots consisting of only UL symbols are under test.
- 4) Measure the rectangular filtered mean power for the assigned NR channel at each antenna connector of UE.
- 5) Measure the RRC filtered mean power of the first and the second UTRA adjacent channel at each antenna connector of UE on both the lower and upper side of the assigned NR channel, respectively.

6) Calculate the ratio of the power between the values measured in step 4 over step 5 for UTRA_{ACLR1}, UTRA_{ACLR2} for both lower an upper side of the assigned NR channel, respectively.

5.1.3.4.5.2 Test requirements

The results obtained shall be compared to the limits in clause 4.1.2.5.5.2 in order to show compliance.

5.1.3.5 Transmitter Spurious Emissions

5.1.3.5.1 Transmitter Spurious Emissions for Single Carrier

5.1.3.5.1.1 Method of test

5.1.3.5.1.1.1 General spurious emissions

5.1.3.5.1.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, which are shown in Table 5.1.3.5.1.1.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 of ETSI TS 138 521-1 [1]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-1 [1].

Table 5.1.3.5.1.1.1.1-1: Test Configuration Table

	Initial Co	onditions				
Test Environ	ment as specified in ETSI TS 138 508-1 [4],	Normal				
clause 4.1.						
Test Freque	ncies as specified in ETSI TS 138 508-1 [4],	Low range, Mid range, High	range (note 2)			
clause 4.3.1.	•		- ' '			
Test Channe	el Bandwidths as specified in ETSI	Lowest, Mid, Highest				
TS 138 508-	1 [4], clause 4.3.1.	_				
Test SCS as	specified in Table 1.1-6	Lowest				
	Test Par	ameters				
Test ID	Downlink Configuration	Uplink Cor	nfiguration			
		Modulation	RB allocation (note 1)			
1	N/A for Courieus Emissions testina	CP-OFDM QPSK	OuterFull			
2	N/A for Spurious Emissions testing	CP-OFDM QPSK	Edge_1RB_Left			
3]	CP-OFDM QPSK	Edge_1RB_Right			
NOTE 1: Th						
	Common UL configuration.					
NOTE 2: Fo	TE 2: For NR band n28, 30 MHz test channel bandwidth is tested with Low range and High range test					
	frequencies.					

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1 and C.2 of ETSI TS 138 521-1 [1], and uplink signals according to clauses G.0, G.1, G.2 and G.3.0 of ETSI TS 138 521-1 [1].
- 4) The UL Reference Measurement channels are set according to Table 5.1.3.5.1.1.1.1-1.
- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-1 [1].

6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4] clause 4.5. Message contents are defined in clause 6.5.3.1.4.3 of ETSI TS 138 521-1 [1] with no exceptions.

5.1.3.5.1.1.1.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.5.1.1.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2) Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at the P_{UMAX} level.
- 3) Measure the power of the transmitted signal with a measurement filter of bandwidths according to Table 4.1.2.6.1.2.1-1. The centre frequency of the filter shall be stepped in contiguous steps according to Table 4.1.2.6.1.2.1-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.
- 4) For UE operating on Band n41, redo the test for the frequency range 1 GHz \leq f < 12,75 GHz with the message content in step 6 of initial conditions with exceptions defined in clause 6.5.3.1.4.3 of ETSI TS 138 521-1 [1].

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

5.1.3.5.1.1.2 Spurious emission for UE co-existence

5.1.3.5.1.1.2.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 5.1.3.5.1.1.2.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 of ETSI TS 138 521-1 [1]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-1 [1].

Table 5.1.3.5.1.1.2.1-1: Test Configuration Table

Initial Conditions					
Test Environ	ment as specified in ETSI TS 138 508-1 [4],	Normal			
clause 4.1.					
•	ncies as specified in ETSI TS 138 508-1 [4],	Low range, Mid range, High	range (see note 2)		
clause 4.3.1.					
	I Bandwidths as specified in ETSI	Lowest, Mid, Highest			
	1 [4], clause 4.3.1.				
Test SCS as	specified in Table 1.1-6	Lowest			
	Test Par	ameters			
		Uplink Configuration			
Test ID	Downlink Configuration	Uplink Co	ntiguration		
Test ID	N/A	Modulation	RB allocation (note 1)		
Test ID	Ç	•			
1 2	Ç	Modulation	RB allocation (note 1)		
1	Ç	Modulation CP-OFDM QPSK	RB allocation (note 1) Outer_Full		
1 2 3	Ç	Modulation CP-OFDM QPSK CP-OFDM QPSK CP-OFDM QPSK	RB allocation (note 1) Outer_Full Edge_1RB_Left Edge_1RB_Right		
1 2 3 NOTE 1: Th	N/A N/A N/A Description of each RB allocation of each RB alloca	Modulation CP-OFDM QPSK CP-OFDM QPSK CP-OFDM QPSK is defined in ETSI TS 138 5.	RB allocation (note 1) Outer_Full Edge_1RB_Left Edge_1RB_Right 21-1 [1], Table 6.1-1		
1 2 3 NOTE 1: Th	N/A N/A Description of each RB allocation	Modulation CP-OFDM QPSK CP-OFDM QPSK CP-OFDM QPSK is defined in ETSI TS 138 5.	RB allocation (note 1) Outer_Full Edge_1RB_Left Edge_1RB_Right 21-1 [1], Table 6.1-1		

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1, C.2 of ETSI TS 138 521-1 [1], and uplink signals according to clauses G.0, G.1, G.2 and G.3.0 of ETSI TS 138 521-1 [1].
- 4) The UL Reference Measurement channels are set according to Table 5.1.3.5.1.1.2.1-1.
- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-1 [1].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4] clause 4.5. Message contents are defined in clause 6.5.3.2.4.3 of ETSI TS 138 521-1 [1].

5.1.3.5.1.1.2.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.5.1.1.2.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2) Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at the P_{UMAX} level.
- 3) Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 4.1.2.6.1.2.2-1. The centre frequency of the filter shall be stepped in contiguous steps according to table 4.1.2.6.1.2.2-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

5.1.3.5.1.1.3 Additional spurious emissions

5.1.3.5.1.1.3.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All these configurations shall be tested with applicable test parameters for each channel bandwidth and sub-carrier spacing, are shown in this clause for different NS values. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2.2 of ETSI TS 138 521-1 [1]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-1 [1].

For network signalled value NS_04 the same test configuration as listed in Table 6.2.3.4.1-2 of ETSI TS 138 521-1 [1] shall be used with the following exceptions:

- Test Channel Bandwidths shall be: 10, 15, 20, 40, 50, 60, 80, 90 and 100 MHz.
- Test SCS shall be: Lowest.

Table 5.1.3.5.1.1.3.1-1: Test Configuration Table (network signalled value "NS_17")

Initial Conditions						
Test Environm	ent as specified in ETSI TS 138 508-1 [4],	Normal				
clause 4.1						
Test Frequence clause 4.3.1	ies as specified in ETSI TS 138 508-1 [4],	Mid range				
Test Channel E	Bandwidths as specified in ETSI	5 MHz, 10 MHz				
	4], clause 4.3.1					
Test SCS as s	pecified in Table 1.1-6	Lowest				
	Test Parar	neters				
Test ID	Downlink Configuration	Uplink Configuration				
		Modulation	RB allocation (note)			
1	N/A	CP-OFDM QPSK	OuterFull			
2		CP-OFDM QPSK	Edge_1RB_Left			
NOTE: The specific configuration of each RB allocation is defined in Table 6.1-1 of ETSI TS 138 521-1 [1] Common UL configuration.						

For network signalled value NS_18 the same test configuration as listed in Table 6.2.3.4.1-11 of ETSI TS 138 521-1 [1] shall be used with the following exceptions:

- Test Channel Bandwidths shall be: 5, 10, 20 and 30 MHz.
- Test SCS shall be: Lowest.

For network signalled value NS_05 and NS_05U the same test configuration as listed in Table 6.2.3.4.1-4 of ETSI TS 138 521-1 [1] shall be used with the following exceptions: Test SCS shall be: Lowest.

For network signalled value NS_43 and NS_43U the same test configuration as listed in Table 6.2.3.4.1-6 of ETSI TS 138 521-1 [1] shall be used with the following exceptions:

- Test Channel Bandwidths shall be: 5, 10 and 15 MHz.
- Test SCS shall be: Lowest.

For network signalled value NS_41 the same test configuration as listed in Table 6.2.3.4.1-15 of ETSI TS 138 521-1 [1] shall be used.

For network signalled value NS_42 the same test configuration as listed in Table 6.2.3.4.1-16 of ETSI TS 138 521-1 [1] shall be used.

For network signalled value NS_24 the same test configuration as listed in Table 6.2.3.4.1-12 of ETSI TS 138 521-1 [1] shall be used.

For network signalled value NS_47 the same test configuration as listed in Table 6.2.3.4.1-17, Table 6.2.3.4.1-17a and Table 6.2.3.4.1-18 of ETSI TS 138 521-1 [1] shall be used with the following exceptions:

- Test Channel Bandwidths shall be: 30 MHz.
- Test SCS shall be: Lowest.

For network signalled value NS_48 the same test configuration as listed in Table 6.2.3.4.1-19 of ETSI TS 138 521-1 [1] shall be used with the following exceptions:

- Test Channel Bandwidths shall be: 25, 30, 40, 45 and 50 MHz
- Test SCS shall be: Lowest.

For network signalled value NS_49 the same test configuration as listed in Table 6.2.3.4.1-29 of ETSI TS 138 521-1 [1] shall be used with the following exceptions:

- Test Channel Bandwidths shall be: 25, 30, 40, 45 and 50 MHz
- Test SCS shall be: Lowest.

For network signalled value NS_44 the same test configuration as listed in Table 6.2.3.4.1-26 of ETSI TS 138 521-1 [1] shall be used with the following exceptions:

- Test SCS shall be: Lowest.
- 1) Connect the SS to the UE to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1 and C.2 of ETSI TS 138 521-1 [1], and uplink signals according to clauses G.0, G.1, G.2 and G.3.0 of ETSI TS 138 521-1 [1].
- 4) The UL Reference Measurement channels are set according to clause 5.1.3.5.1.1.3.1.
- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-1 [1].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.5.3.3.4.3 of ETSI TS 138 521-1 [1].

5.1.3.5.1.1.3.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0-1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.5.1.1.3.1-1-1 through Table 5.1.3.5.1.1.3.1-14. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2) Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at the P_{UMAX} level.
- Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration in tables 5.1.3.5.1.1.3.1-1-1 through 5.1.3.5.1.1.3.1-14 as appropriate, which shall meet the requirements in clause 6.5.3.3.5 of ETSI TS 138 521-1 [1] with allowed A-MPR values specified in tables 6.2.3.5-1 through 6.2.3.5-27 of ETSI TS 138 521-1 [1] as appropriate per test condition specified in tables 6.2.3.4.1-1 through 6.2.3.4.1-30 of ETSI TS 138 521-1 [1] as appropriate. The measured power shall be verified for each step. The measurement period shall capture the active time slots.
- 4) Measure the power of the transmitted signal with a measurement filter of bandwidths according to Table 6.5.3.3.3.1-1 to Table 6.5.3.3.3.1-27 of ETSI TS 138 521-1 [1] as appropriate. The centre frequency of the filter shall be stepped in contiguous steps according to the same table. For NS_41 the additional spurious emissions requirement shall be verified with UE transmission power obtained by sending uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window in Table 5.1.3.5.1.1.3.2-1 of the target power level 15 dBm for at least the duration of the additional spurious emissions measurement.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 5.1.3.5.1.1.3.2-1: Uplink power control window for FR1 standalone

Carrier centre frequency, F _c	BW _{Channel}	Uplink power control window (dB)
E < 3.0 CH ₇	BW _{Channel} ≤ 40 MHz	-0,7 dB to 3,1 dB
F _c ≤ 3,0 GHz	40 MHz < BW _{Channel} ≤ 100 MHz	-1,4 dB to 4,1 dB
3.0 GHz < F _c ≤ 4.2 GHz	BW _{Channel} ≤ 40 MHz	-1,0 dB to 3,4 dB
3,0 GHZ < F _C ≥ 4,2 GHZ	40 MHz < BW _{Channel} ≤ 100 MHz	-1,6 dB to 4,3 dB
	BW _{Channel} ≤ 20 MHz	-1,3 dB to 3,7 dB
$4,2 \text{ GHz} < F_{\text{C}} \le 6,0 \text{ GHz}$	20 MHz < BW _{Channel} ≤ 40 MHz	-1,5 dB to 3,9 dB
	40 MHz < BW _{Channel} ≤ 100 MHz	-1,6 dB to 4,3 dB

5.1.3.5.1.2 Test requirements

The results obtained shall be compared to the limits in clause 4.1.2.6.1.2 in order to show compliance.

5.1.3.5.2	Void
5.1.3.5.3	Void

5.1.3.5.4 Void

5.1.3.5.5 Transmitter Spurious Emissions for UL-MIMO

5.1.3.5.5.1 Method of test

5.1.3.5.5.1.1 General spurious emissions

5.1.3.5.5.1.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 5.1.3.5.5.1.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 of ETSI TS 138 521-1 [1]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-1 [1].

Table 5.1.3.5.5.1.1.1-1: Test Configuration Table

	Initial Conditions										
Test Environ	ment as specified in ETSI TS 138 508-1 [4],	Normal									
clause 4.1.											
	ncies as specified in ETSI TS 138 508-1 [4],	Low range, Mid range, Hig	h range								
clause 4.3.1.											
Test Channel	I Bandwidths as specified in ETSI	Lowest, Mid, Highest									
TS 138 508-1	1 [4], clause 4.3.1.										
Test SCS as	specified in Table 1.1-6	Lowest, Highest									
	Test Para	ameters									
Test ID	Downlink Configuration	Uplink Co	onfiguration								
		Modulation	RB allocation (note)								
1	N/A for Spurious Emissions testing	CP-OFDM QPSK	OuterFull								
2	N/A for Spurious Emissions testing	CP-OFDM QPSK	Edge_1RB_Left								
3		CP-OFDM QPSK Edge_1RB_Right									
NOTE: Th	ne specific configuration of each RB allocation	is defined in Table 6.1-1 of E	TSI TS 138 521-1 [1]								
Co	ommon UL configuration.										

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.2.2 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1 and C.2 of ETSI TS 138 521-1 [1], and uplink signals according to clauses G.0, G.1, G.2, and G.3.0 of ETSI TS 138 521-1 [1].
- 4) The UL Reference Measurement channels are set according to Table 5.1.3.5.5.1.1.1-1.
- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-1 [1].

6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release On, Test Mode On and Test Loop Function On according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.5D.3.1.4.3 of ETSI TS 138 521-1 [1].

5.1.3.5.5.1.1.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.5.5.1.1.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX UL MIMO in ETSI TS 138 508-1 [4], clause 4.3.6.1.1.2.
- Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at the P_{UMAX} level.
- 3) Measure the power of the transmitted signal at each antenna connector with a measurement filter of bandwidths according to Table 4.1.2.6.1.2.1-1. The centre frequency of the filter shall be stepped in contiguous steps according to Table 4.1.2.6.1.2.1-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

5.1.3.5.5.1.2 Spurious emission for UE co-existence

5.1.3.5.5.1.2.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 5.1.3.5.5.1.2.1-1 The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 of ETSI TS 138 521-1 [1]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-1 [1].

Table 5.1.3.5.5.1.2.1-1: Test Configuration Table

Initial Conditions										
Test Environi	ment as specified in ETSI TS 138 508-1 [4],	Normal								
clause 4.1.										
Test Frequer	ncies as specified in ETSI TS 138 508-1 [4],	Low range, Mid range, High	n range							
clause 4.3.1.										
Test Channe	I Bandwidths as specified in ETSI	Lowest, Mid, Highest								
TS 138 508-1	1 [4], clause 4.3.1.									
Test SCS as	specified in Table 1.1-6	Lowest								
	Test Para	meters								
Test ID	Downlink Configuration	Uplink Configuration								
		Modulation	RB allocation (note)							
1	N/A for Spurious Emissions testing	CP-OFDM QPSK	Outer_Full							
2	N/A for Spurious Effissions testing	CP-OFDM QPSK	Edge_1RB_Left							
3		CP-OFDM QPSK	Edge_1RB_Right							
NOTE: Th	ne specific configuration of each RB allocation	is defined in Table 6.1-1 of E	TSI TS 138 521-1 [1]							
Co	ommon UL configuration.									

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.2.2 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1, C.2 of ETSI TS 138 521-1 [1], and uplink signals according to clauses G.0, G.1, G.2, G.3.0 of ETSI TS 138 521-1 [1].
- 4) The UL Reference Measurement Channels are set according to Table 5.1.3.5.5.1.2.1-1.
- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-1 [1].

6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release On, Test Mode On and Test Loop Function On according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.5D.3.2.4.3 of ETSI TS 138 521-1 [1].

5.1.3.5.5.1.2.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.5.5.1.2.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX UL MIMO in ETSI TS 138 508-1 [4], clause 4.3.6.1.1.2.
- Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at the P_{UMAX} level.
- 3) Measure the power of the transmitted signal at each UE antenna connector with a measurement filter of bandwidths according to Table 4.1.2.6.1.2.2-1. The centre frequency of the filter shall be stepped in contiguous steps according to Table 4.1.2.6.1.2.2-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

5.1.3.5.5.1.3 Additional spurious emissions

5.1.3.5.5.1.3.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All these configurations shall be tested with applicable test parameters for each channel bandwidth and sub-carrier spacing, are shown in Table 5.1.3.5.5.1.3.1-1 through Table 5.1.3.5.5.1.3.1-12 for different NS values. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2.2 of ETSI TS 138 521-1 [1]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-1 [1].

Table 5.1.3.5.5.1.3.1-1: Test Configuration Table (network signalled value "NS_04") (applicable to band n41)

	Initial Conditions											
Test E	nvironment as specified in ET	SI TS 138 508-1 [4], clause 4.1	Normal									
		SI TS 138 508-1 [4], clause 4.3.	(See Freg column)									
	hannel Bandwidths as specifi		Lowest, Highest									
	CS as specified in Table 1.1-	ô	Lowest									
		onal spurious emissions test p										
		uration										
		Configuration										
Test	Freq	N/A for A-MPR testing	Modulation	RB allocation								
ID				(see note)								
1	Low		CP-OFDM QPSK	Edge_1RB_Left								
2	2 496 + 3/2 × BW _{Channel} - 6	MHz	CP-OFDM QPSK	Edge_1RB_Left								
4	2 496 + BW _{Channel} /2 +		CP-OFDM QPSK	Inner Full								
4	MAX(10 MHz, 0,25 x BWch	annel)	CP-OFDM QPSK	Outer Full								
5	High		CP-OFDM QPSK	Edge_1RB_Right								
6	High		CP-OFDM QPSK	Inner Full								
7	High		CP-OFDM QPSK	Outer Full								
8	Low		CP-OFDM 16 QAM	Edge_1RB_Left								
9	2 496 + 3/2 × BW _{Channel} - 6	MHz	CP-OFDM 16 QAM	Edge_1RB_Left								
10	2 496 + BW _{Channel} /2 +		CP-OFDM 16 QAM	Inner Full								
11	MAX(10 MHz, 0,25 x BWch	annel)	CP-OFDM 16 QAM	Outer Full								
12	High		CP-OFDM 16 QAM	Edge_1RB_Right								
13	High		CP-OFDM 16 QAM	Inner Full								
14	High		CP-OFDM 16 QAM	Outer Full								
15	Low		CP-OFDM 64 QAM	Edge_1RB_Left								
16	2 496 + 3/2 × BW _{Channel} - 6	MHz	CP-OFDM 64 QAM	Edge_1RB_Left								
17	2 496 + BW _{Channel} /2 + MAX(10 MHz, 0,25 × BW _{Ch}	annel)	CP-OFDM 64 QAM	Outer Full								
18	High		CP-OFDM 64 QAM	Edge_1RB_Right								
19	High		CP-OFDM 64 QAM	Outer Full								
20	Low		CP-OFDM 256 QAM	Edge_1RB_Left								
21	2 496 + 3/2 × BW _{Channel} - 6	MHz	CP-OFDM 256 QAM	Edge_1RB_Left								
22	2 496 + BW _{Channel} /2 +		CP-OFDM 256 QAM	Outer Full								
	MAX(10 MHz, 0,25 x BW _{Ch}	annel)										
23	High		CP-OFDM 256 QAM	Edge_1RB_Right								
24	High		CP-OFDM 256 QAM	Outer Full								
NOTE:	The specific configuration	of each RB allocation is defined	d in Table 6.1-1 of ETSI TS 13	38 521-1 [1].								

Table 5.1.3.5.5.1.3.1-2: Test Configuration table for NS_47 power class 3 (contiguous allocation) (applicable to band n41)

Initial Conditions	
Test Environment as specified in ETSI TS 138 508-1 [4], clause 4.1	Normal
Test Frequencies	As specified in Tables 6.2.3.4.1-19 and 6.2.3.4.1-20 of ETSI TS 138 521-1 [1]
Test Channel Bandwidths as specified in ETSI TS 138 508-1 [4], clause 4.3.1	30 MHz
Test SCS as specified in Table 1.1-6	Lowest
A-MPR test parameters for NS_4	7

A-MPR test parameters for NS_47												
	-	OL D)**	200		Uplink Configuration							
Test ID	Fc (MHz)	Ch BW (MHz)	SCS (kHz)		M	lodulation		allocation (note	1)			
	(IVITIZ)	(IVITIZ)	(KIIZ)			(Note 2)	SCS 15 kHz	SCS 30 kHz	SCS 60 kHz			
43	Default	30	Default			QPSK	Ed	dge_1RB_Left (A1)			
44	Default	30	Default			QPSK	1@29 (A2)	1@15 (A2)	1@8 (A2)			
45	Default	30	Default			QPSK	Ed	ge_1RB_Right (A	3)			
46	Default	30	Default			QPSK		Outer_Full (A2)				
47	Default	30	Default			QPSK	108@0 (A4)	54@0 (A4)	27@0 (A4)			
48	Default	30	Default			QPSK	80@0 (A4)	40@0 (A4)	20@0 (A4)			
49	Default	30	Default]		QPSK	54@0 (A2)	27@0 (A2)	12@0 (A2)			
50	Default	30	Default			16 QAM	Ed	dge_1RB_Left (A1)			
51	Default	30	Default			16 QAM	1@29 (A2)	1@15 (A2)	1@8 (A2)			
52	Default	30	Default			16 QAM	Ed	ge_1RB_Right (A	3)			
53	Default	30	Default	Downlink	Downlink		16 QAM		Outer_Full (A2)			
54	Default	30	Default				16 QAM	108@0 (A4)	54@0 (A4)	27@0 (A4)		
55	Default	30	Default			FDM	16 QAM	80@0 (A4)	40@0 (A4)	20@0 (A4)		
56	Default	30	Default	Configuration	Ä	16 QAM	54@0 (A2)	27@0 (A2)	12@0 (A2)			
57	Default	30	Default		CP-OI	64 QAM	Ed	dge_1RB_Left (A1)			
58	Default	30	Default		Ö	64 QAM	1@29 (A2)	1@15 (A2)	1@8 (A2)			
59	Default	30	Default			64 QAM	Ed	ge_1RB_Right (A	3)			
60	Default	30	Default			64 QAM		Outer_Full (A2)				
61	Default	30	Default			64 QAM	108@0 (A4)	54@0 (A4)	27@0 (A4)			
62	Default	30	Default			64 QAM	80@0 (A4)	40@0 (A4)	20@0 (A4)			
63	Default	30	Default			64 QAM	54@0 (A2)	27@0 (A2)	12@0 (A2)			
64	Default	30	Default			256 QAM	Ed	dge_1RB_Left (A1)			
65	Default	30	Default			256 QAM	1@29 (A2)	1@15 (A2)	1@8 (A2)			
66	Default	30	Default			256 QAM	Ed	ge_1RB_Right (A	3)			
67	Default	30	Default]		256 QAM		Outer_Full (A2)				
68	Default	30	Default			256 QAM	108@0 (A4)	54@0 (A4)	27@0 (A4)			
69	Default	30	Default			256 QAM	80@0 (A4)	40@0 (A4)	20@0 (A4)			
70	Default	30	Default			256 QAM	54@0 (A2)	27@0 (A2)	12@0 (A2)			

NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 of ETSI TS 138 521-1 [1] unless otherwise stated in this table.

DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1. NOTE 2:

NOTE 3: UE operating in TDD mode with Pi/2 BPSK modulation and UE indicates support for UE capability powerBoostingpi2BPSK and the IE powerBoostPi2BPSK is set to 1 for bands n41.

NOTE 4: UE operating in FDD mode, or in TDD mode in bands other than n41, or in TDD mode the IE powerBoostPi2BPSK is

set to 0 for bands n41.

Table 5.1.3.5.5.1.3.1-3: Test Configuration table for NS_47 power class 3 (almost contiguous allocation) (applicable to band n41)

	Initial Conditions Test Environment as specified in ETSI TS 138 508-1 [4], clause 4.1 Normal												
Test Env	vironment a	as specifie	d in ETSI	Normal									
Test Fre	quencies			As specified in Tables 6.2.3.4.1-19 and 6.2.3.4.1-20 of ETSI TS 138 521-1 [1]									
Test Cha	annel Band	dwidths as	specified	30 MHz									
Test SC	S as speci	fied in Tab	le 1.1-6	Lowest									
				A-MPR te	st para	ameters for NS_4	17						
	Fc	Ch BW	scs				Uplink Configuration						
Test ID	(MHz)	(MHz)	(kHz)		Modulation		RB allocation (note 1)						
	` ,	` ′	` '				(
1	Default	30	Default	Downlink	≥	QPSK	Outer_Full (A2)						
1 2	Default Default	` ,	` ′	Downlink Configuration	FDM	QPSK 16 QAM	` '						
1 2 3		30	Default		OFDM		Outer_Full (A2)						
	Default	30 30	Default Default		CP-OFDM	16 QAM	Outer_Full (A2) Outer_Full (A2)						

As specified in Tables 6.2.3.4.1-19 and

Normal

Table 5.1.3.5.5.1.3.1-4: Test Configuration table for NS_47 power class 2 (contiguous allocation) (applicable to band n41)

Test Environment as specified in ETSI TS 138 508-1 [4], clause 4.1

Initial Conditions

Test Frequencies							6.2.3.4.1-20 of ETSI TS 138 521-1 [1]											
el Bandw	idths as	specified in	n ETSI TS 138 5	08-1	[4], clause 4.3	.1	30 MHz											
							Lowest											
			A-MPR te	st pa	rameters for	NS_4	7											
Fc	Ch RW	909																
				M														
` ,	, ,				, <u> </u>	SC			SCS 60 kHz									
					·			<u> </u>	,									
						1@	, ,	, ,	1@8 (A2)									
	30						Ed	dge_1RB_Right (A	.3)									
	30							Outer_Full (A2)										
Default	30	Default				108	3@0 (A4)	54@0 (A4)	27@0 (A4)									
Default	30	Default				80	@0 (A4)	40@0 (A4)	20@0 (A4)									
Default	30	Default			QPSK	54	·@0 (A2)	27@0 (A2)	12@0 (A2)									
Default	30	Default			16 QAM		E	dge_1RB_Left (A ²	1)									
Default	30	Default			16 QAM	1@	29 (A2)	1@15 (A2)	1@8 (A2)									
Default	30	Default			16 QAM		Ed	dge_1RB_Right (A	.3)									
Default	30	Default			16 QAM			Outer_Full (A2)										
Default	30	Default	Downlink Configuration					5						16 QAM	108	3@0 (A4)	54@0 (A4)	27@0 (A4)
Default	30	Default				Σ	16 QAM	80	@0 (A4)	40@0 (A4)	20@0 (A4)							
Default	30	Default		FD	16 QAM	54	·@0 (A2)	27@0 (A2)	12@0 (A2)									
Default	30	Default			ı	٥-٥	64 QAM		E	dge_1RB_Left (A ²	1)							
Default	30	Default			CF	64 QAM	1@	29 (A2)	1@15 (A2)	1@8 (A2)								
Default	30	Default			64 QAM		Ed	dge_1RB_Right (A	3)									
Default	30	Default]		64 QAM			Outer_Full (A2)										
Default	30	Default]		64 QAM	108	3@0 (A4)	54@0 (A4)	27@0 (A4)									
Default	30	Default]		64 QAM	80	@0 (A4)	40@0 (A4)	20@0 (A4)									
Default	30	Default			64 QAM	54	@0 (A2)	27@0 (A2)	12@0 (A2)									
Default	30	Default]		256 QAM		E	dge_1RB_Left (A	1)									
Default	30	Default				256 QAM	1@		1@15 (A2)	1@8 (A2)								
Default	30	Default]		256 QAM		Ed	dge_1RB_Right (A	.3)									
Default	30	Default			256 QAM			Outer_Full (A2)										
	Fc (MHz) Default	Fc (MHz) Default 30	Fc (MHz) Ch BW (MHz) (MH	A-MPR te Fc (MHz) (MHz) (kHz) Default 30 Default	Rel Bandwidths as specified in ETSI TS 138 508-1 as specified in Table 1.1-6 Fc (MHz) (MHz) (kHz) (kHz)	A-MPR test parameters for A-MPR test parameters for Modulation (note 2) Default 30 Default	Bandwidths as specified in ETSI TS 138 508-1 [4], clause 4.3.1	Composition Composition	Bandwidths as specified in ETSI TS 138 508-1 [4], clause 4.3.1 30 MHz									

NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 of ETSLTS 138 521-1 [1] unless otherwise stated in this table.

256 QAM

256 QAM

256 QAM

108@0 (A4)

80@0 (A4)

54@0 (A2)

54@0 (A4)

40@0 (A4)

27@0 (A2)

27@0 (A4)

20@0 (A4)

12@0 (A2)

NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.

For network signalled value NS_05 which is applicable to bands n1, n65 and n84, the same test configuration as listed in Table 6.2.3.4.1-4 of ETSI TS 138 521-1 [1] shall be used with the following exceptions:

Test SCS shall be: Lowest.

Default

Default

Default

61

62

63

• Only Test IDs 66 to 115 shall be tested.

30

30

Default

Default

Default

For network signalled value NS_48 which is applicable to bands n1 and n84, the same test configuration as listed in Table 6.2.3.4.1-19 of ETSI TS 138 521-1 [1] shall be used with the following exceptions:

- Test Channel Bandwidths shall be: 25, 30, 40 and 50 MHz
- Test SCS shall be: Lowest.
- Only Test IDs 31 to 60 shall be tested.

For network signalled value NS_49 which is applicable to bands n1 and n84, the same test configuration as listed in Table 6.2.3.4.1-29 of ETSI TS 138 521-1 [1] shall be used with the following exceptions:

- Test Channel Bandwidths shall be: 25, 30, 40, 45 and 50 MHz
- Test SCS shall be: Lowest.
- Only Test IDs 53 to 104 shall be tested.

For network signalled value NS_44 which is applicable to band n38, the same test configuration as listed in Table 6.2.3.4.1-26 of ETSI TS 138 521-1 [1] shall be used with the following exceptions:

- Test SCS shall be: Lowest.
- Only Test IDs 23 to 44 shall be tested.
- 1) Connect the SS to the UE to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1, C.2 of ETSI TS 138 521-1 [1], and uplink signals according to clauses G.0, G.1, G.2, G.3.0 of ETSI TS 138 521-1 [1].
- 4) The UL Reference Measurement channels are set according to clause 5.1.3.5.5.1.3.1.
- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-1 [1].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release On, Test Mode On and Test Loop Function On according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.5.3.3.4.3 of ETSI TS 138 521-1 [1].

5.1.3.5.1.1.3.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to tables in clause 5.1.3.5.5.1.3.1 as appropriate. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in ETSI TS 138 508-1 [4], clause 4.3.6.1.1.2.
- 2) Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at the P_{UMAX} level.
- 3) Measure the sum of the mean power at each UE antenna connector in the channel bandwidth of the radio access mode according to the test configurations in clause 5.1.3.5.5.1.3.1, which shall meet the requirements described in clauses 6.2D.3.5 of ETSI TS 138 521-1 [1] as appropriate for each network signalling. The period of measurement shall be at least the continuous duration of 1 ms over consecutive active uplink slots and uplink symbols. For TDD, only slots consisting of only UL symbols are under test.
- 4) Measure the power of the transmitted signal at each UE antenna connector with a measurement filter of bandwidths according to tables in clause 4.1.2.6.1.2.3 as appropriate. The centre frequency of the filter shall be stepped in contiguous steps according to the same table the measured power shall be verified for each step. The measurement period shall capture the active time slots.
- 5) If UE supports ULFPTx Mode-2 or Mode-full power, repeat test steps 1~4 with the exception that the PDCCH DCI format 0_1 is specified with the condition ULFPTx_Mode2 or ULFPTx_ModeFull in ETSI TS 138 508-1 [4], clause 4.3.6.1.1.2 depending on UE reported capability.

5.1.3.5.5.2 Test requirements

The results obtained shall be compared to the limits in clause 4.1.2.6.5.2 in order to show compliance.

5.1.3.6 Receiver Reference Sensitivity Level

5.1.3.6.1 Receiver Reference Sensitivity Level for Single Carrier

5.1.3.6.1.1 Method of test

5.1.3.6.1.1.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table 5.1.3.6.1.1.1-1, Table 5.1.3.6.1.1.1-2 and Table 5.1.3.6.1.1.1-3. The details of the uplink Reference Measurement Channels (RMCs) are specified in ETSI TS 138 521-1 [1], clause A.2.2. Configurations of PDSCH and PDCCH before measurement are specified in ETSI TS 138 521-1 [1], clause C.2.

Table 5.1.3.6.1.1.1-1: Test Configuration Table

		Initial Co	onditions			
Test Envi	ronment as specified in	ETSI TS 138 508-1 [4]	Normal, TL/VL, TL/VH, TH/VL,	ΓH/VH		
Test Freq	uencies as specified in 3.1	ETSI TS 138 508-1 [4]	Low range, Mid range, High ran	ge (note 4)		
	nnel Bandwidths as spe 08-1 [4] clause 4.3.1	cified in ETSI	Lowest, Mid, Highest (note 4) Lowest UL / Lowest DL, Lowest	III / Highest DL (note 3)		
	as specified in Table 1.	1-6	Lowest	OL7 Highloot DL (Hoto o)		
	•		rameters			
Test ID	Downlink (Configuration	Uplink Configuration			
	Modulation	RB allocation	Modulation	RB allocation		
1	CP-OFDM QPSK	Full RB (note 1)	DFT-s-OFDM QPSK	REFSENS (note 2)		
		ble 5.1.3.6.1.1.1-3 which	and channel BW as specified in a defines uplink RB configuration			
NOTE 3:		elected according to asyr . DL channel bandwidth s	mmetric channel bandwidths spe shall be selected first.	cified in clause 5.3.6 of		
NOTE 4:	For NR band n28, 30 M frequencies.	MHz test channel bandwid	dth is tested with Low range and	High range test		
NOTE 5:	In a band where UE su	ipports 4Rx, the test need	ds to be repeated with only 2Rx a	antennas connected and		

Table 5.1.3.6.1.1.1-2: Downlink Configuration of each RB allocation

Channel Bandwidth	SCS(kHz)	LCRBmax	Outer RB allocation / Normal RB allocation
	15	25	25@0
5 MHz	30	11	11@0
	60	N/A	N/A
	15	52	52@0
10 MHz	30	24	24@0
	60	11	11@0
	15	79	79@0
15 MHz	30	38	38@0
	60	18	18@0
	15	106	106@0
20 MHz	30	51	51@0
	60	24	24@0
	15	133	133@0
25 MHz	30	65	65@0
	60	31	31@0
	15	160	160@0
30 MHz	30	78	78@0
30 MHZ	60	38	38@0
	15	216	216@0
40 MHz	30	106	106@0
	60	51	51@0
	15	270	270@0
50 MHz	30	133	133@0
	60	65	65@0
	15	N/A	N/A
60 MHz	30	162	162@0
	60	79	79@0
	15	N/A	N/A
80 MHz	30	217	217@0
	60	107	107@0
	15	N/A	N/A
90 MHz	30	245	245@0
	60	121	121@0
	15	N/A	N/A
100 MHz	30	273	273@0
	60	135	135@0

NOTE: Test Channel Bandwidths are checked separately for each NR band, the applicable channel bandwidths are specified in Table 1.1-6.

Table 5.1.3.6.1.1.1-3: Uplink configuration for reference sensitivity, LCRB @ Restart format

Operating	SCS	5	10	15	20	25	30	40	50	60	80	90	100	Duplex
Band	kHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	Mode
	15	25@0	50@21	75@4 ¹	100@6 ¹		128@32 ¹	128@88¹						
n1	30		24@0	36@21	50@1 ¹		64@14 ¹	64@42 ¹						FDD
	60		10@1 ¹	18@0	24@0		30@8¹	30@21 ¹]
	15	25@0	50@21	50@29 ¹	50@56¹	50@83 ¹	50@110 ¹							
n3	30		24@0	24@14 ¹	24@27¹	24@41 ¹	24@54 ¹							FDD
	60		10@1 ¹	10@8 ¹	10@14 ¹	10@21 ¹	10@28 ¹							
	15	25@0	50@21	75@4¹	75@31¹									
n7	30		24@0	36@21	36@15 ¹									FDD
	60		10@1 ¹	18@0	18@6¹]
	15	25@0	25@27¹	25@54 ¹	25@81 ¹									
n8	30		10@14 ¹	10@28 ¹	10@41 ¹									FDD
	60													1
	15	25@0	20@0 ¹	20@11 ²	20@16 ²									
n20	30		10@0 ¹	10@6 ²	10@8 ²									FDD
	60													1
	15	25@0	25@27 ¹	25@54 ¹	25@81 ¹									FDD
n28	30		10@14 ¹	10@28 ¹	10@41 ¹									
	60													
	15	25@0	50@0	75@0	100@0									
n38	30		24@0	36@0	50@0									TDD
	60		10@0	18@0	24@0									1
	15	25@0	50@0	75@0	100@0	128@0	160@0	216@0	270@0					
n40	30		24@0	36@0	50@0	64@0	75@0	100@0	128@0	162@0	216@0			TDD
	60		10@0	18@0	24@0	30@0	36@0	50@0	64@0	75@0	100@0			1
	15		50@0	75@0	100@0		160@0	216@0	270@0					
n41	30		24@0	36@0	50@0		75@0	100@0	128@0	162@0	216@0	243@0	270@0	TDD
	60		10@0	18@0	24@0		36@0	50@0	64@0	75@0	100@0	120@0	135@0	1
	15	25@0	50@0	75@0	100@0 ¹			216@0	270@0					
n50	30		24@0	36@0	50@0			100@0	128@0	162@0	note 3			TDD
	60		10@0	18@0	24@0			50@0	64@0	75@0	note 3			1
	15	25@0												
n51	30													TDD
	60													1
	15	25@0	50@21	75@4 ¹	100@6¹									
n65	30	-	24@0	36@2 ¹	50@1 ¹									FDD
	60		10@1 ¹	18@0	24@0									1
	15		50@0	75@0	100@0			216@0	270@0			1	1	
n77	30		24@0	36@0	50@0			100@0	128@0	162@0	216@0	243@0	270@0	TDD
	60		10@0	18@0	24@0			50@0	64@0	75@0	100@0	120@0	135@0	

Operating	SCS	5	10	15	20	25	30	40	50	60	80	90	100	Duplex
Band	kHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	Mode
	15		50@0	75@0	100@0 ¹			216@0	270@0					
n78	30		24@0	36@0	50@0			100@0	128@0	162@0	216@0	243@0	270@0	TDD
	60		10@0	18@0	24@0			50@0	64@0	75@0	100@0	120@0	135@0	

- NOTE 1: UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.3.2-1 of ETSI TS 138 101-1 [6]).
- NOTE 2: For Band 20; for 15 kHz SCS, in the case of 15 MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 11 and in the case of 20 MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 16; for 30 kHz SCS, in the case of 15 MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 6 and in the case of 20 MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 8; for 60 kHz SCS, in the case of 15 MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 3 and in the case of 20 MHz channel bandwidth, the UL resource blocks shall be located at RB_{start} 4.
- NOTE 3: For DL channel bandwidths that do not have symmetric UL channel bandwidth, the highest valid UL configuration with the lowest duplex distance shall be used.
- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to ETSI TS 138 521-1 [1], clauses C.0, C.1, C.2, and C.3.1, and uplink signals according to ETSI TS 138 521-1 [1], clauses G.0, G.1, G.2, and G.3.1.
- 4) The UL and Reference Measurement Channel is set according to Table 5.1.3.6.1.1.1-1, Table 5.1.3.6.1.1.1-2, and Table 5.1.3.6.1.1.1-3.
- 5) Propagation conditions are set according to ETSI TS 138 521-1 [1], clause B.O.
- 6) Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release On, Test Mode On and Test Loop Function On according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in ETSI TS 138 521-1 [1], clause 7.3.2.4.3.

5.1.3.6.1.1.2 Test Procedure

- 1) SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 5.1.3.6.1.1.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.6.1.1.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3) Set the Downlink signal level to the appropriate REFSENS value defined in Table 4.1.2.7.1.2-1 or Table 4.1.2.7.1.2-2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE to ensure the UE transmits P_{UMAX} level for at least the duration of the Throughput measurement.
- 4) Measure the average throughput for a duration sufficient to achieve statistical significance according to ETSI TS 138 521-1 [1], clause H.2.

5.1.3.6.1.2 Test requirements

The results obtained in step 4 shall be compared to the limits in Table 4.1.2.7.1.2-1 for two antenna port and Table 4.1.2.7.1.2-2 for four antenna port in order to show compliance.

5.1.3.6.2	Void
5.1.3.6.3	Void
5.1.3.6.4	Void
5.1.3.6.5	Receiver Reference Sensitivity Level for UL-MIMO
5.1.3.6.5.1	Method of test
5.1.3.6.5.1.1	Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 1.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table 5.1.3.6.5.1.1-1, Table 5.1.3.6.1.1.1-2, and Table 5.1.3.6.1.1.1-3. The details of the uplink and downlink Reference Measurement Channels (RMCs) are specified in ETSI TS 138 521-1 [1], clauses A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in ETSI TS 138 521-1 [1], clause C.2.

Table 5.1.3.6.5.1.1-1: Test Configuration Table

Initial Conditions							
Test Envi	onment as specified i	n ETSI TS 138 508-1 [4],	Normal, TL/VL, TL/VH, TH/VL, TH/VH				
clause 4.1							
Test Freq	uencies as specified in	n ETSI TS 138 508-1 [4],	Low range, Mid range, High range				
clause 4.3	3.1						
	nel Bandwidths as sp	ecified in ETSI	Lowest, Mid, Highest				
TS 138 50	08-1 [4], clause 4.3.1						
Test SCS	as specified in Table	1.1-6	Lowest				
	Test Parameters						
Test ID	Downlink	Configuration	Uplink Configuration				
	Modulation	RB allocation	Modulation	RB allocation			
1	CP-OFDM QPSK	Full RB (note 1)	CP-OFDM QPSK	REFSENS (note 2)			
NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 5.1.3.6.1.1.1-2.							
NOTE 2: REFSENS refers to Table 5.1.3.6.1.1.1-3 which defines uplink RB configuration and start RB location for							
each SCS, channel BW and NR band.							
NOTE 3:							
	and 4Rx REFSENS requirement (Table 4.1.2.7.1.2-2) is used in the test requirements.						

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.1.2 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to ETSI TS 138 521-1 [1], clauses C.0, C.1, C.2 and C.3.1, and uplink signals according to ETSI TS 138 521-1 [1], clauses G.0, G.1, G.2 and G.3.1.
- 4) The UL and DL Reference Measurement Channel is set according to Table 5.1.3.6.5.1.1-1, Table 5.1.3.6.1.1.1-2 and Table 5.1.3.6.1.1.1-3.
- 5) Propagation conditions are set according to ETSI TS 138 521-1 [1], clause B.0.
- 6) Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in ETSI TS 138 521-1 [1], clause 7.3D.2.4.3.

5.1.3.6.5.1.2 Test Procedure

Same test procedure as specified in clause 5.1.3.6.1.1.2 with the following exceptions:

- Instead of Table 5.1.3.6.1.1.1-1, use Table 5.1.3.6.5.1.1-1 in step 1.
- Step 2: SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.6.5.1.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in ETSI TS 138 508-1 [4], clause 4.3.6.1.1.2.

5.1.3.6.5.2 Test requirements

The results obtained in step 4 shall be compared to the limits in clause 4.1.2.7.5 in order to show compliance.

5.1.3.7 Receiver Adjacent Channel Selectivity (ACS)

5.1.3.7.1 Receiver Adjacent Channel Selectivity for Single Carrier

5.1.3.7.1.1 Method of test

5.1.3.7.1.1.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 5.1.3.7.1.1.1-1. The details of the uplink and downlink Reference Measurement Channels (RMCs) are specified in ETSI TS 138 521-1 [1], clauses A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in ETSI TS 138 521-1 [1], clause C.2.

Table 5.1.3.7.1.1.1-1: Test Configuration Table

Default Conditions						
Test Environment as	specified in ETSI TS 13	Normal				
clause 4.1						
Test Frequencies as	specified in ETSI TS 13	Mid range (note 3)				
clause 4.3.1						
Test Channel Bandw	idths as specified in ET	Lowest, Mid, Highest				
clause 4.3.1						
Test SCS as specifie	ed in Table 1.1-6		Lowest			
Test Parameters						
	Downlink Co	nfiguration	Uplink Configuration			
Test ID	Mod'n	RB allocation	Mod'n	RB allocation		
1	CP-OFDM QPSK	note 1	DFT-s-OFDM QPSK	note 1		
NOTE 1: The specific configuration of uplink and downlink are defined in Table 5.1.3.6.1.1.1-1.						
NOTE 2: In a band where UE supports 4Rx, the test shall be performed only with 4Rx antennas ports						
connected and 4Rx REFSENS requirement (Table 4.1.2.7.1.2-2) is used in the test requirements.						
NOTE 3: For NR band n28, 30 MHz test channel bandwidth is tested with Low range test frequencies.						

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, in Figure A.3.1.4.1 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to ETSI TS 138 521-1 [1], clauses C.0, C.1, C.2, C.3.1, and uplink signals according to ETSI TS 138 521-1 [1], clauses G.0, G.1, G.2, G.3.1.
- 4) The DL and UL Reference Measurement Channels are set according to Table 5.1.3.7.1.1.1-1.
- 5) Propagation conditions are set according to ETSI TS 138 521-1 [1], clause B.0.
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message content is defined in ETSI TS 138 521-1 [1], clause 7.5.4.3.

5.1.3.7.1.1.2 Test Procedure

- 1) SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to 5.1.3.7.1.1.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 5.1.3.7.1.1.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3) Set the Downlink signal level to the value as defined in Table 4.1.2.8.1.2-3 or Table 4.1.2.8.1.2-5 as appropriate (Case 1). Send uplink power control commands to the UE using 1 dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window in Table 5.1.3.5.1.1.3.2-1 of the target power level in Table 4.1.2.8.1.2-3 or Table 4.1.2.8.1.2-5 for at least the duration of the Throughput measurement.
- 4) Set the Interferer signal level to the value as defined in Table 4.1.2.8.1.2-3 or Table 4.1.2.8.1.2-5 as appropriate (Case 1) and frequency below the wanted signal, using a modulated interferer bandwidth as defined in ETSI TS 138 521-1 [1], annex D.
- 5) Measure the average throughput for a duration sufficient to achieve statistical significance according to ETSI TS 138 521-1 [1], annex H.

- 6) Repeat steps from 3 to 5, using an interfering signal above the wanted signal in Case 1 at step 4).
- 7) Set the Downlink signal level to the value as defined in Table 4.1.2.8.1.2-4 or Table 4.1.2.8.1.2-6 as appropriate (Case 2). Send uplink power control commands to the UE using 1 dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window in Table 5.1.3.5.1.1.3.2-1 of the target power level in Table 4.1.2.8.1.2-4 or Table 4.1.2.8.1.2-6 for at least the duration of the Throughput measurement.
- 8) Set the Interferer signal level to the value as defined in Table 4.1.2.8.1.2-4 or Table 4.1.2.8.1.2-6 as appropriate (Case 2) and frequency below the wanted signal, using a modulated interferer bandwidth as defined in ETSI TS 138 521-1 [1], annex D.
- 9) Measure the average throughput for a duration sufficient to achieve statistical significance according to ETSI TS 138 521-1 [1], annex H.
- 10) Repeat steps from 7 to 9, using an interfering signal above the wanted signal in Case 2 at step 8).
- 11) Repeat for applicable channel bandwidths and operating band combinations in both Case 1 and Case 2.

NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is no greater than the target power level and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in ETSI TS 138 521-1 [1], clause F.4.3.

5.1.3.7.1.2 Test requirements

The results obtained shall be compared to the limits in tables 4.1.2.8.1.2-1, 4.1.2.8.1.2-2, 4.1.2.8.1.2-3, 4.1.2.8.1.2-4, 4.1.2.8.1.2-5 and 4.1.2.8.1.2-6 in order to show compliance.

5.1.3.7.2	Void
5.1.3.7.3	Void
5.1.3.7.4	Void
5.1.3.7.5	Receiver Adjacent Channel Selectivity for UL MIMO
5.1.3.7.5.1	Method of test
5.1.3.7.5.1.1	Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 1.1-1. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table 5.1.3.7.5.1.1-1. The details of the uplink and downlink Reference Measurement Channels (RMCs) are specified in ETSI TS 138 521-1 [1], clause A.2 and clause A.3 respectively. Configurations of PDSCH and PDCCH before measurement are specified in ETSI TS 138 521-1 [1], clause C.2.

Table 5.1.3.7.5.1.1-1: Test Configuration Table

2 () 2 ()							
Default Conditions							
Test Environment as specified in ETSI TS 138 508-1 [4], clause 4.1							
	Test Frequencies as specified in ETSI TS 138 508-1 [4], Mid range clause 4.3.1						
	Test Channel Bandwidths as specified in ETSI TS 138 508-1 [4], clause 4.3.1						
Test SCS as specified in Table 1.1-6 Lowest							
Test Parameters							
	Downlink Configuration Uplink Configuration						
Test ID	st ID Mod'n RB allocation		Mod'n	RB allocation			
1	CP-OFDM QPSK	note 1	CP-OFDM QPSK	note 1			
NOTE 2:	NOTE 1: The specific configuration of uplink and downlink are defined in tables 5.1.3.6.1.1.1-2 and 5.1.3.6.1.1.1-3 for Downlink and Uplink respectively. NOTE 2: In a band where UE supports 4Rx, the test shall be performed only with 4Rx antennas ports connected and 4Rx REFSENS requirement (Table 4.1.2.7.1.2-2) is used in the test requirements.						

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, in Figure A.3.1.4.4 for TE diagram and clause A.3.2.3 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to ETSI TS 138 521-1 [1], clauses C.0, C.1, C.2, C.3.1, and uplink signals according to ETSI TS 138 521-1 [1], clauses G.0, G.1, G.2 and G.3.1.
- 4) The DL and UL Reference Measurement Channels are set according to Table 5.1.3.7.5.1.1-1.
- 5) Propagation conditions are set according to ETSI TS 138 521-1 [1], clause B.0.
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4] clause 4.5. Message content is defined in ETSI TS 138 521-1 [1], clause 7.5D.4.3.

5.1.3.7.5.1.2 Test procedure

Same test procedure as specified in clause 5.1.3.7.1.1.2 with the following exceptions:

- Instead of Table 5.1.3.7.1.1.1-1, use Table 5.1.3.7.5.1.1-1 in step 1.
- Step 2: SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.7.5.1.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in ETSI TS 138 508-1 [4], clause 4.3.6.1.1.2.

5.1.3.7.5.2 Test requirements

The results obtained shall be compared to the limits in clause 4.1.2.8.5 in order to show compliance.

5.1.3.8 Receiver Blocking Characteristics

5.1.3.8.1 Receiver Blocking Characteristics for Single Carrier

5.1.3.8.1.1 Method of test

5.1.3.8.1.1.1 In-band Blocking

5.1.3.8.1.1.1.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 5.1.3.8.1.1.1-1. The details of the uplink and downlink Reference Measurement Channels (RMC) are specified in ETSI TS 138 521-1 [1], clauses A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in ETSI TS 138 521-1 [1], clause C.2.

Table 5.1.3.8.1.1.1.1-1: Test Configuration Table

Default Conditions					
Test Environment as specified in ETSI TS 138 508-1 [4], Normal clause 4.1					
	Test Frequencies as specified in ETSI TS 138 508-1 [4], Mid range (note 3) clause 4.3.1				
	Test Channel Bandwidths as specified in ETSI TS 138 508-1 [4], clause 4.3.1 Lowest, Mid, Highest				
Test SCS a	Test SCS as specified in Table 1.1-6 Lowest				
Test Parameters					
	Downlink Configuration Uplink Configuration			uration	
Test ID				RB allocation	
1	CP-OFDM QPSK	note 1	DFT-s-OFDM QPSK	note 1	
NOTE 1:	The specific configuration of uplink and downlink are defined in Table 5.1.3.6.1.1.1-1.				
	In a band where UE supports 4Rx, the test shall be performed only with 4Rx antennas ports connected and 4Rx REFSENS requirement (Table 4.1.2.7.1.2-2) is used in the test requirements.				
	For NR band n28, 30 MHz test channel bandwidth is tested with Low range test frequencies.				

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, in Figure A.3.1.4.1 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to ETSI TS 138 521-1 [1], clauses C.0, C.1, C.2, C.3.1, and uplink signals according to ETSI TS 138 521-1 [1], clauses G.0, G.1, G.2 and G.3.1.
- 4) The DL and UL Reference Measurement Channels are set according to Table 5.1.3.8.1.1.1.1-1.
- 5) Propagation conditions are set according to ETSI TS 138 521-1 [1], clause B.0.
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in ETSI TS 138 521-1 [1], clause 7.6.2.4.3.

5.1.3.8.1.1.1.2 Test Procedure

1) SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 5.1.3.8.1.1.1-1. The SS sends downlink MAC padding bits on the DL RMC.

- 2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.8.1.1.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3) Set the parameters of the signal generator for an interfering signal below the wanted signal in Case 1 according to tables 4.1.2.9.1.2.1-1 and 4.1.2.9.1.2.1-2 or tables 4.1.2.9.1.2.1-3 and 4.1.2.9.1.2.1-4 as appropriate depending on NR band.
- 4) Set the downlink signal level according to Table 4.1.2.9.1.2.1-1 or 4.1.2.9.1.2.1-3 as appropriate. Send uplink power control commands to the UE using 1 dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window in Table 5.1.3.5.1.1.3.2-1 of the target power level in Table 4.1.2.9.1.2.1-1 or Table 4.1.2.9.1.2.1-3 for at least the duration of the Throughput measurement.
- 5) Measure the average throughput for a duration sufficient to achieve statistical significance according to ETSI TS 138 521-1 [1], annex H.
- 6) Repeat steps from 3 to 5, using an interfering signal above the wanted signal in Case 1 at step 3.
- 7) Repeat steps from 3 to 6, using interfering signals in Case 2 at step 3 and 6. The ranges of case 2 are covered in steps equal to the interferer bandwidth. Interferer frequencies should be chosen starting with an offset nearest to the centre frequency and sweep outwards towards the band edges. In order to ensure that full range is tested for interferer frequency, run last test steps at frequency equal to F_{Interferer} range limit defined at the corresponding band edge.
- 8) If applicable based on NR band, repeat steps from 3 to 5, using interfering signals in Case 3 at step 3.
- 9) If applicable based on NR band, repeat steps from 3 to 5, using interfering signals in Case 4 at step 3

NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is no greater than the target power level and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in ETSI TS 138 521-1 [1], clause F.4.3.

5.1.3.8.1.1.2 Out-of-band blocking

5.1.3.8.1.1.2.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in Table 5.1.3.8.1.1.2.1-1. The details of the uplink and downlink Reference Measurement Channels (RMCs) are specified in ETSI TS 138 521-1 [1], clauses A.2 and A.3 respectively. The details of the OCNG patterns used are specified in ETSI TS 138 521-1 [1], clause A.5. Configurations of PDSCH and PDCCH before measurement are specified in ETSI TS 138 521-1 [1], clause C.3.

Table 5.1.3.8.1.1.2.1-1: Test Configuration Table

Test Environment as specified in ETSI TS 138 508-1 [4], loanse 4.1 Test Frequencies as specified in ETSI TS 138 508-1 [4], loanse 4.3.1 Test Channel Bandwidths as specified in ETSI loanse 4.3.1 Test SCS as specified in ETSI TS 138 508-1 [4], loanse 4.3.1 Test SCS as specified in ETSI TS 138 508-1 [4], lowest					
Test Frequencies as specified in ETSI TS 138 508-1 [4], One frequency chosen arbitrarily from lo clause 4.3.1 Test Channel Bandwidths as specified in ETSI TS 138 508-1 [4], clause 4.3.1 One frequency chosen arbitrarily from lo or high range Lowest, Mid, Highest					
clause 4.3.1 or high range Test Channel Bandwidths as specified in ETSI TS 138 508-1 [4], clause 4.3.1 or high range Lowest, Mid, Highest					
Test Channel Bandwidths as specified in ETSI TS 138 508-1 [4], clause 4.3.1 Lowest, Mid, Highest					
TS 138 508-1 [4], clause 4.3.1					
Test SCS as specified in ETSI TS 138 508-1 [4], Lowest					
clause 4.3.1					
Test Parameters					
Downlink Configuration Uplink Configuration					
Test ID Mod'n RB allocation Mod'n RB allocation					
1 CP-OFDM QPSK note 1 DFT-s-OFDM QPSK note 1					
NOTE 1: The specific configuration of uplink and downlink are defined in Table 5.1.3.6.1.1.1-1.					

NOTE 1: The specific configuration of uplink and downlink are defined in Table 5.1.3.6.1.1.1-1.

NOTE 2: In a band where UE supports 4Rx, the test shall be performed only with 4Rx antennas ports connected and 4Rx REFSENS requirement (Table 4.1.2.7.1.2-2) is used in the test requirements.

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, in Figure A.3.1.4. 2 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to ETSI TS 138 521-1 [1], clauses C.0, C.1, C.2, C.3.1, and uplink signals according to ETSI TS 138 521-1 [1], clauses G.0, G.1, G.2 and G.3.1.
- 4) The UL and DL Reference Measurement Channels are set according to Table 5.1.3.8.1.1.2.1-1.
- 5) Propagation conditions are set according to ETSI TS 138 521-1 [1], clause B.0.
- 6) Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in ETSI TS 138 521-1 [1], clause 7.6.3.4.3.

5.1.3.8.1.1.2.2 Test Procedure

- 1) SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 5.1.3.8.1.1.2.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.8.1.1.2.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3) Set the parameters of the CW signal generator for an interfering signal below the wanted signal according to Table 4.1.2.9.1.2.2-2 or Table 4.1.2.9.1.2.2-4. The frequency step size is $\min(BW_{channel}/2|5)$ MHz.
- 4) Set the downlink signal level according to Table 4.1.2.9.1.2.2-1 or Table 4.1.2.9.1.2.2-3. Send uplink power control commands to the UE using 1 dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window in Table 5.1.3.5.1.1.3.2-1 of the target power level in Table 4.1.2.9.1.2.2-1 or Table 4.1.2.9.1.2.2-3 for at least the duration of the Throughput measurement.
- 5) Measure the average throughput for a duration sufficient to achieve statistical significance according to ETSI TS 138 521-1 [1], annex H.
- 6) Record the frequencies for which the throughput does not meet the requirements.
- 7) Repeat steps from 3 to 6, using an interfering signal above the wanted signal at step 3.

NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is no greater than the target power level and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in ETSI TS 138 521-1 [1], clause F.4.3.

5.1.3.8.1.1.3 Narrow band blocking

5.1.3.8.1.1.3.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in Table 5.1.3.8.1.1.3.1-1. The details of the uplink and downlink Reference Measurement Channels (RMCs) are specified in ETSI TS 138 521-1 [1], clauses A.2 and A.3 respectively. The details of the OCNG patterns used are specified in ETSI TS 138 521-1 [1], clause A.5. Configurations of PDSCH and PDCCH before measurement are specified in ETSI TS 138 521-1 [1], clause C.2.

Table 5.1.3.8.1.1.3.1-1: Test Configuration Table

	Default Conditions					
	onment as specified in E1	Normal				
clause 4.1						
Test Frequ	iencies as specified in ET	'SI TS 138 508-1 [4],	Mid range (note 4)			
clause 4.3	.1					
Test Chan	nel Bandwidths as specifi	ed in ETSI	Lowest, Mid and Highest	t (note 2)		
TS 138 50	8-1 [4], clause 4.3.1			,		
Test SCS	as specified in ETSI TS 1	38 508-1 [4],	According to CH BW SC	S in		
clause 4.3.1 Table 4.1.2.9.1.2.3-1						
Test Parameters						
	Downlink Configuration Uplink Configurat			uration		
Test ID	Mod'n	RB allocation	Mod'n	RB allocation		
1	CP-OFDM QPSK	note 1	DFT-s-OFDM QPSK	note 1		
NOTE 1:	E 1: The specific configuration of uplink and downlink are defined in Table 5.1.3.6.1.1.1-1.					
NOTE 2:	E 2: Void.					
NOTE 3: In a band where UE supports 4Rx, the test shall be performed only with 4Rx antennas						
	ports connected and 4Rx REFSENS requirement (Table 4.1.2.7.1.2-2) is used in the test					
	requirements.					
NOTE 4	For NR band n28, 30 MHz test channel bandwidth is tested with Low range test					
1,012 4.	frequencies.	iz toot orialinoi ballawii	att is tosted with Low fair	90 1001		
1	HEUUCHUICS.					

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, in Figure A.3.1.4.2 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to ETSI TS 138 521-1 [1], clauses C.0, C.1, C.2 and C.3.1, and uplink signals according to ETSI TS 138 521-1 [1], clauses G.0, G.1, G.2 and G.3.1.
- 4) The UL and DL Reference Measurement Channels are set according to Table 5.1.3.8.1.1.3.1-1.
- 5) Propagation conditions are set according to ETSI TS 138 521-1 [1], clause B.0.
- 6) Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in ETSI TS 138 521-1 [1], clause 7.6.4.4.3.

5.1.3.8.1.1.3.2 Test Procedure

- 1) SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 5.1.3.8.1.1.3.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.8.1.1.3.1-1. Since the UE has no payload and no loopback data to send, the UE transmits uplink MAC padding bits on the UL RMC.

- 3) Set the parameters of the CW signal generator for an interfering signal below the wanted signal according to Table 4.1.2.9.1.2.3-1.
- 4) Set the downlink signal level according to Table 4.1.2.9.1.2.3-1. Send uplink power control commands to the UE using 1 dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window in Table 5.1.3.5.1.1.3.2-1 of the target power level in Table 4.1.2.9.1.2.3-1 for at least the duration of the Throughput measurement.
- 5) Measure the average throughput for a duration sufficient to achieve statistical significance according to ETSI TS 138 521-1 [1], clause H.2.
- 6) Repeat steps from 3 to 5, using an interfering signal above the wanted signal at step 3.

NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is no greater than the target power level and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in ETSI TS 138 521-1 [1], clause F.4.3.

5.1.3.8.1.2 Test requirements

The results obtained shall be compared to the limits in clause 4.1.2.9.1.2 in order to show compliance.

5.1.3.8.2	Void
5.1.3.8.3	Void
5.1.3.8.4	Void

5.1.3.8.5 Receiver Blocking Characteristics for UL-MIMO

5.1.3.8.5.1 Method of test

5.1.3.8.5.1.1 In-band Blocking

5.1.3.8.5.1.1.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 5.1.3.8.5.1.1.1-1. The details of the uplink and downlink Reference Measurement Channels (RMC) are specified in ETSI TS 138 521-1 [1], clauses A.2 and A.3. The details of the OCNG patterns used are specified in ETSI TS 138 521-1 [1], clause A.5. Configurations of PDSCH and PDCCH before measurement are specified in ETSI TS 138 521-1 [1], clause C.2.

Table 5.1.3.8.5.1.1.1-1: Test Configuration Table

Test Environment as specified in ETSI TS 138 508-1 [4],	Default Conditions						
Test Frequencies as specified in ETSI TS 138 508-1 [4], Mid range clause 4.3.1 Test Channel Bandwidths as specified in ETSI Lowest, Mid, Highest TS 138 508-1 [4], clause 4.3.1 Test SCS as specified in Table 1.1-6 Lowest Test Parameters Downlink Configuration Uplink Configuration Test ID Mod'n RB allocation Mod'n RB allocation 1 CP-OFDM QPSK note 1 CP-OFDM QPSK note 1 NOTE 1: The specific configuration of uplink and downlink are defined in Table 5.1.3.6.5.1.1-1.	· ·						
clause 4.3.1 Test Channel Bandwidths as specified in ETSI TS 138 508-1 [4], clause 4.3.1 Test SCS as specified in Table 1.1-6 Lowest Test Parameters Downlink Configuration Uplink Configuration Test ID Mod'n RB allocation 1 CP-OFDM QPSK note 1 CP-OFDM QPSK note 1 NOTE 1: The specific configuration of uplink and downlink are defined in Table 5.1.3.6.5.1.1-1.	clause 4.1	clause 4.1					
Test Channel Bandwidths as specified in ETSI TS 138 508-1 [4], clause 4.3.1 Test SCS as specified in Table 1.1-6 Lowest Test Parameters Downlink Configuration Uplink Configuration Test ID Mod'n RB allocation 1 CP-OFDM QPSK note 1 CP-OFDM QPSK note 1 NOTE 1: The specific configuration of uplink and downlink are defined in Table 5.1.3.6.5.1.1-1.	Test Freque	Test Frequencies as specified in ETSI TS 138 508-1 [4], Mid range					
TS 138 508-1 [4], clause 4.3.1 Test SCS as specified in Table 1.1-6 Lowest Test Parameters Downlink Configuration Uplink Configuration Test ID Mod'n RB allocation 1 CP-OFDM QPSK note 1 CP-OFDM QPSK note 1 NOTE 1: The specific configuration of uplink and downlink are defined in Table 5.1.3.6.5.1.1-1.	clause 4.3.1						
Test SCS as specified in Table 1.1-6 Test Parameters Downlink Configuration Test ID Mod'n RB allocation 1 CP-OFDM QPSK NOTE 1: The specific configuration of uplink and downlink are defined in Table 5.1.3.6.5.1.1-1.	Test Chann	Test Channel Bandwidths as specified in ETSI Lowest, Mid, Highest					
Test Parameters Downlink Configuration Uplink Configuration	TS 138 508	TS 138 508-1 [4], clause 4.3.1					
Downlink Configuration Uplink Configuration	Test SCS as specified in Table 1.1-6 Lowest						
Test ID Mod'n RB allocation Mod'n RB allocation 1 CP-OFDM QPSK note 1 CP-OFDM QPSK note 1 NOTE 1: The specific configuration of uplink and downlink are defined in Table 5.1.3.6.5.1.1-1.	Test Parameters						
1 CP-OFDM QPSK note 1 CP-OFDM QPSK note 1 NOTE 1: The specific configuration of uplink and downlink are defined in Table 5.1.3.6.5.1.1-1.		Downlink Configuration Uplink Configuration					
NOTE 1: The specific configuration of uplink and downlink are defined in Table 5.1.3.6.5.1.1-1.	Test ID	Test ID Mod'n RB allocation Mod'n RB allocation					
	1	CP-OFDM QPSK	note 1	CP-OFDM QPSK	note 1		
NOTE O I I I I I I I I I I I I I I I I I I	NOTE 1: The specific configuration of uplink and downlink are defined in Table 5.1.3.6.5.1.1-1.						
NOTE 2: In a band where UE supports 4Rx, the test shall be performed only with 4Rx antennas							

- NOTE 1: The specific configuration of uplink and downlink are defined in Table 3.1.3.6.3.1.1-1.

 NOTE 2: In a band where UE supports 4Rx, the test shall be performed only with 4Rx antennas ports connected and 4Rx REFSENS requirement (Table 4.1.2.7.1.2-2) is used in the test requirements.
- 1) Connect the SS and interfering source to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, in Figure A.3.1.4.4 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to ETSI TS 138 521-1 [1], clauses C.0, C.1, C.2, C.3.1, and uplink signals according to ETSI TS 138 521-1 [1], clauses G.0, G.1, G.2, G.3.1.
- 4) The DL and UL Reference Measurement Channels are set according to Table 5.1.3.8.5.1.1.1-1.
- 5) Propagation conditions are set according to ETSI TS 138 521-1 [1], clause B.0.
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in ETSI TS 138 521-1 [1], clause 7.6D.2.4.3.

5.1.3.8.5.1.1.2 Test Procedure

Same test procedure as specified in clause 5.1.3.8.1.1.1.2 with the following exceptions:

• Instead of Table 5.1.3.8.1.1.1.1-1, use Table 5.1.3.8.5.1.1.1-1 in step 1 and step 2.

5.1.3.8.5.1.2 Out-of-band blocking

5.1.3.8.5.1.2.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 5.1.3.8.5.1.2.1-1. The details of the uplink and downlink Reference Measurement Channels (RMC) are specified in ETSI TS 138 521-1 [1], clauses A.2 and A.3. The details of the OCNG patterns used are specified in ETSI TS 138 521-1 [1], clause A.5. Configurations of PDSCH and PDCCH before measurement are specified in ETSI TS 138 521-1 [1], clause C.2.

Table 5.1.3.8.5.1.2.1-1: Test Configuration Table

Default Conditions					
Test Enviror clause 4.1	nment as specified in El	Normal			
Test Frequencies as specified in ETSI TS 138 508-1 [4], Clause 4.3.1 One frequency chosen arbitrarily from low or high range					
	el Bandwidths as specifi -1 [4], clause 4.3.1	Lowest, Mid, Highest			
Test SCS as specified in Table 1.1-6			Lowest		
Test Parameters					
Downlink Configuration Uplink Configuration					
Test ID	Mod'n	RB allocation	Mod'n	RB allocation	
1	CP-OFDM QPSK	note 1	CP-OFDM QPSK	note 1	
NOTE 1: The specific configuration of uplink and downlink are defined in Table 5.1.3.6.5.1.1-1.					

- NOTE 1: The specific configuration of uplink and downlink are defined in Table 5.1.3.6.5.1.1-1.

 NOTE 2: In a band where UE supports 4Rx, the test shall be performed only with 4Rx antennas ports connected and 4Rx REFSENS requirement (Table 4.1.2.7.1.2-2) is used in the test requirements.
- 1) Connect the SS and interfering source to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, in Figure A.3.1.4.5 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to ETSI TS 138 521-1 [1], clauses C.0, C.1, C.2, C.3.1, and uplink signals according to ETSI TS 138 521-1 [1], clauses G.0, G.1, G.2, G.3.1.
- 4) The DL and UL Reference Measurement Channels are set according to Table 5.1.3.8.5.1.2.1-1.
- 5) Propagation conditions are set according to ETSI TS 138 521-1 [1], clause B.0.
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in ETSI TS 138 521-1 [1], clause 7.6D.3.4.3.

5.1.3.8.5.1.2.2 Test Procedure

Same test procedure as specified in 5.1.3.8.1.1.2.2, with the following exceptions:

• Instead of Table 5.1.3.8.1.1.2.1-1, use Table 5.1.3.8.5.1.2.1-1 in step 1 and step 2.

5.1.3.8.5.1.3 Narrow band blocking

5.1.3.8.5.1.3.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 5.1.3.8.5.1.3.1-1. The details of the uplink and downlink Reference Measurement Channels (RMC) are specified in ETSI TS 138 521-1 [1], clauses A.2 and A.3. The details of the OCNG patterns used are specified in ETSI TS 138 521-1 [1], clause A.5. Configurations of PDSCH and PDCCH before measurement are specified in ETSI TS 138 521-1 [1], clause C.2.

Table 5.1.3.8.5.1.3.1-1: Test Configuration Table

Default Conditions						
Test Environment as specified in ETSI TS 138 508-1 [4], Normal						
clause 4.1						
Test Freque	Test Frequencies as specified in ETSI TS 138 508-1 [4], Mid range					
clause 4.3.1	clause 4.3.1					
Test Chann	Test Channel Bandwidths as specified in ETSI Lowest, Mid, Highest					
TS 138 508-1 [4], clause 4.3.1						
Test SCS as specified in Table 1.1-6 Lowest						
Test Parameters						
	Downlink Co	nfiguration	Uplink Config	uration		
Test ID Mod'n RB allocation Mod'n RB alloca				RB allocation		
1 CP-OFDM QPSK note 1 CP-OFDM QPSK note 1						
NOTE 1: The specific configuration of uplink and downlink are defined in Table 5.1.3.6.5.1.1-1.						
NOTE 2: In a band where UE supports 4Rx, the test shall be performed only with 4Rx antennas						
ports connected and 4Rx REFSENS requirement (Table 4.1.2.7.1.2-2) is used in the test						

- 1) Connect the SS and interfering source to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, in Figure A.3.1.4.5 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to ETSI TS 138 521-1 [1], clauses C.0, C.1, C.2, C.3.1, and uplink signals according to ETSI TS 138 521-1 [1], clauses G.0, G.1, G.2, G.3.1.
- 4) The DL and UL Reference Measurement Channels are set according to Table 5.1.3.8.5.1.3.1-1.
- 5) Propagation conditions are set according to ETSI TS 138 521-1 [1], clause B.0.
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in ETSI TS 138 521-1 [1], clause 7.6D.4.4.3.

5.1.3.8.5.1.3.2 Test Procedure

requirements.

Same test procedure as specified in clause 5.1.3.8.1.1.3.2, with the following exceptions:

• Instead of Table 5.1.3.8.1.1.3.1-1, use Table 5.1.3.8.5.1.3.1-1 in step 1 and step 2.

5.1.3.8.5.2 Test requirements

The results obtained shall be compared to the limits in clause 4.1.2.9.5 in order to show compliance.

5.1.3.9 Receiver Spurious Response

5.1.3.9.1 Receiver Spurious Response for Single Carrier

5.1.3.9.1.1 Method of test

5.1.3.9.1.1.1 Initial Conditions

The initial conditions shall be the same as in clause 5.1.3.8.1.1.2.1 in order to test spurious responses obtained in clause 5.1.3.8.1.2 under the same conditions.

5.1.3.9.1.1.2 Test Procedure

- 1) SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 5.1.3.8.1.1.2.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 5.1.3.8.1.1.2.1-1. Since the UE has no payload and no loopback data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3) Set the parameters of the CW signal generator for an interfering signal according to Table 5.1.3.8.1.2.1.1-1-3. The spurious frequencies are taken from records in the final step of test procedures in Table 5.1.3.8.1.1.2.1-1.
- 4) Set the downlink signal level according to Table 4.1.2.10.1.2-1 or 4.1.2.10.1.2-2. Send uplink power control commands to the UE using 1 dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window in Table 5.1.3.5.1.1.3.2-1 of the target power level in Table 4.1.2.10.1.2-1 or 4.1.2.10.1.2-2 for at least the duration of the Throughput measurement.
- 5) For the spurious frequency, measure the average throughput for a duration sufficient to achieve statistical significance according to ETSI TS 138 521-1 [1], clause H.2.

NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is no greater than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in ETSI TS 138 521-1 [1], clause F.4.3.

5.1.3.9.1.1.3 Test requirements

The results obtained in step 5 shall be compared to the limits in Table 4.1.2.10.1.2-1, 4.1.2.10.1.2-2, 4.1.2.10.1.2-3 in order to show compliance.

5.1.3.9.2	Void
5.1.3.9.3	Void
5.1.3.9.4	Void
5.1.3.9.5	Receiver Spurious Response for UL-MIMO
5.1.3.9.5.1	Method of test
5.1.3.9.5.1.1	Initial Conditions

The initial conditions shall be the same as in clause 5.1.3.8.5.1.2.1 in order to test spurious responses obtained in clause 5.1.3.8.5.2 under the same conditions.

5.1.3.9.5.1.2 Test Procedure

- 1) SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Test Configuration Table 5.1.3.8.5.1.2.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to the Test Configuration Table 5.1.3.8.5.1.2.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in ETSI TS 138 508-1 [4], clause 4.3.6.1.1.2.
- 3) Set the parameters of the CW signal generator for an interfering signal according to Table 4.1.2.10.5-2. The spurious frequencies are taken from records in the final step of test procedures in clause 5.1.3.8.5.1.2.2.
- 4) Set the downlink signal level according to Table 4.1.2.10.5-1. Send uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within +0, -3,4 dB of the target level Table 4.1.2.10.5-1 for carrier frequency $f \le 3,0$ GHz or within +0, -4,0 dB of the target level for carrier frequency 3,0 GHz < $f \le 4,2$ GHz, for at least the duration of the throughput measurement.
- 5) For the spurious frequency, measure the average throughput for a duration sufficient to achieve statistical significance according to ETSI TS 138 521-1 [1], clause H.2.

5.1.3.9.5.3 Test requirements

The results obtained in step 5 shall be compared to the limits in tables 4.1.2.10.5-1 and 4.1.2.10.5-2 in order to show compliance.

5.1.3.10 Receiver Intermodulation Characteristics

5.1.3.10.1 Receiver Intermodulation Characteristics for Single Carrier

5.1.3.10.1.1 Method of test

5.1.3.10.1.1.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 5.1.3.10.1.1.1-1. The details of the uplink and downlink Reference Measurement Channels (RMCs) are specified in ETSI TS 138 521-1 [1], clauses A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in ETSI TS 138 521-1 [1], clause C.2.

Table 5.1.3.10.1.1.1-1: Test Configuration Table

	Default Conditions					
Test Envir	Test Environment as specified in ETSI TS 138 508-1 [4], Normal					
clause 4.1						
Test Frequencies as specified in ETSI TS 138 508-1 [4], Mid range (note 3)						
clause 4.3	.1		-			
Test Chan	nel Bandwidths as specif	ied in ETSI	Lowest, Mid, Highest			
TS 138 50	8-1 [4], clause 4.3.1					
Test SCS	Test SCS as specified in Table 1.1-6 Highest					
Test Parameters						
	Downlink Configuration Uplink Configuration					
Test ID Mod'n RB allocation Mod'n			RB allocation			
1	CP-OFDM QPSK	note 1	DFT-s-OFDM QPSK	note 1		
NOTE 1:	: The specific configuration of uplink and downlink are defined in Table 5.1.3.6.1.1.1-1.					
NOTE 2:	TE 2: In a band where UE supports 4Rx, the test shall be performed only with 4Rx antennas					
	ports connected and 4Rx REFSENS requirement (Table 4.1.2.7.1.2-2) is used in the test					
	requirements.					
NOTE 3:	For NR band n28, 30 MHz test channel bandwidth is tested with Low range test					
	frequencies.					

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, in Figure A.3.1.4.3 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to ETSI TS 138 521-1 [1] clauses C.0, C.1, C.2, C.3.1, and uplink signals according to ETSI TS 138 521-1 [1], clauses G.0, G.1, G.2 and G.3.1.
- 4) The DL and UL Reference Measurement Channels are set according to Table 5.1.3.10.1.1.1-1.
- 5) Propagation conditions are set according to ETSI TS 138 521-1 [1], clause B.0.
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message content is defined in ETSI TS 138 521-1 [1], clause 7.5.4.3.

5.1.3.10.1.1.2 Test Procedure

- 1) SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 5.1.3.10.1.1.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.10.1.1.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3) Set the Downlink signal level to the value as defined in Table 4.1.2.11.1.2-1 or Table 4.1.2.11.1.2-2. Send uplink power control commands to the UE using 1 dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window in Table 5.1.3.5.1.1.3.2-1 dB of the target power level in Table 4.1.2.11.1.2-1 for at least the duration of the Throughput measurement.
- 4) Set the Interfering signal levels to the values as defined in Table 4.1.2.11.1.2-1 or Table 4.1.2.11.1.2-2 and frequency below the wanted signal.
- 5) Measure the average throughput for a duration sufficient to achieve statistical significance according to ETSI TS 138 521-1 [1], clause G.2.
- 6) Repeat steps from 3 to 5, using an interfering signal above the wanted signal at step 4.

NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is no greater than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in ETSI TS 138 521-1 [1], clause F.4.3.

5.1.3.10.1.2 Test requirements

The results obtained in step 5 shall be compared to the limits in tables 4.1.2.11.1.2-1 and 4.1.2.11.1.2-2 in order to show compliance.

5.1.3.10.2	Void
5.1.3.10.3	Void
5.1.3.10.4	Void

5.1.3.10.5 Receiver Intermodulation Characteristics for UL-MIMO

5.1.3.10.5.1 Method of test

5.1.3.10.5.1.1 Initial Conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 5.1.3.10.5.1.1-1. The details of the uplink and downlink Reference Measurement Channels (RMCs) are specified in ETSI TS 138 521-1 [1], clauses A.2 and A.3. The details of the OCNG patterns used are specified in ETSI TS 138 521-1 [1], clause A.5. Configurations of PDSCH and PDCCH before measurement are specified in ETSI TS 138 521-1 [1], clause C.2.

Table 5.1.3.10.5.1.1-1: Test Configuration Table

Default Conditions					
Test Environment as specified in ETSI TS 138 508-1 [4], clause 4.1			Normal		
Test Frequencies as specified in ETSI TS 138 508-1 [4], clause 4.3.1					
Test Channel Bandwidths as specified in ETSI TS 138 508-1 [4], clause 4.3.1		Lowest, Mid, Highest			
Test SCS as specified in Table 1.1-6		Highest			
Test Parameters					
Downlink Configuration			Uplink Config	uration	
Test ID	Mod'n	RB allocation	Mod'n	RB allocation	
1	CP-OFDM QPSK	note 1	CP-OFDM QPSK	note 1	

NOTE 1: The specific configuration of uplink and downlink are defined in Table 5.1.3.6.5.1.1-1.
NOTE 2: In a band where UE supports 4Rx, the test shall be performed only with 4Rx antennas ports connected and 4Rx REFSENS requirement (Table 4.1.2.7.1.2-2) is used in the test requirements.

- 1) Connect the SS and interfering sources to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, in Figure A.3.1.4.6 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to ETSI TS 138 521-1 [1], clauses C.0, C.1, C.2, C.3.1, and uplink signals according to ETSI TS 138 521-1 [1], clauses G.0, G.1, G.2 and G.3.1.
- 4) The DL and UL Reference Measurement Channels are set according to Table 5.1.3.10.5.1.1-1.
- 5) Propagation conditions are set according to ETSI TS 138 521-1 [1], clause B.0.
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message content is defined in ETSI TS 138 521-1 [1], clause 7.8D.2.4.3.

5.1.3.10.5.1.2 Test Procedure

Same test procedure as specified in clause 5.1.3.10.1.1.2 with the following exceptions:

• Instead of Table 5.1.3.10.1.1.1-1, use Table 5.1.3.10.5.1.1-1 in step 1 and step 2.

5.1.3.10.5.2 Test requirements

The results obtained in step 5 shall be compared to the limits in clause 4.1.2.11.5 in order to show compliance.

5.1.3.11 Receiver Spurious Emissions

5.1.3.11.1 Receiver Spurious Emissions for Single Carrier

5.1.3.11.1.1 Method of test

5.1.3.11.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 5.1.3.11.1.1-1. The details of the uplink and downlink Reference Measurement Channels (RMCs) are specified in ETSI TS 138 521-1 [1], clauses A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in ETSI TS 138 521-1 [1], clause C.2.

Table 5.1.3.11.1.1.1: Test Configuration Table

Default Conditions					
Test Environment as specified in ETSI TS 138 508-1 [4], Normal					
clause 4.1					
Test Frequencies as specified in ETSI TS 138 508-1 [4], Low range, Mid range, High range (note					
clause 4.3.	1		3)		
Test Chann	el Bandwidths as specif	ied in ETSI	Highest		
TS 138 508	3-1 [4], clause 4.3.1				
Test SCS a	Test SCS as specified in Table 1.1-6 Highest				
Test Parameters					
	Downlink Configuration Uplink Configuration			uration	
Test ID Mod'n RB allocation Mod'n RB a			RB allocation		
1	N/A	0	N/A	0	
NOTE 1: The specific configuration of uplink and downlink are defined in Table 5.1.3.6.1.1.1-1.					
NOTE 2: In a band where UE supports 4Rx, the test shall be performed only with 4Rx antennas					
l r	ports connected and 4Rx REFSENS requirement (Table 4.1.2.7.1.2-2) is used in the test				
r	requirements.				
NOTE 3: F	For NR band n28, 30 MHz test channel bandwidth is tested with Low range and High				
lr	ange test frequencies.				

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, in Figure A.3.1.5.1 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to ETSI TS 138 521-1 [1], clauses C.0, C.1, C.2, C.3.1 and uplink signals according to ETSI TS 138 521-1 [1], clauses G.0, G.1, G.2 and G.3.1.
- 4) The DL and UL Reference Measurement Channels are set according to Table 5.1.3.11.1.1.1-1.
- 5) Propagation conditions are set according to ETSI TS 138 521-1 [1], clause B.0.

6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message content is defined in ETSI TS 138 521-1 [1], clause 7.5.4.3.

5.1.3.11.1.1.2 Test Procedure

- 1) Sweep the spectrum analyser (or equivalent equipment) over a frequency range and measure the average power of spurious emission.
- 2) Repeat step 1 for all NR Rx antennas of the UE.

5.1.3.11.1.2 Test requirements

The results obtained in step 1 shall be compared to the limits in Table 4.1.2.12.1.2-1 in order to show compliance.

5	1 2 1	11.2	Void	٦
J.	l) .	I I.Z	VUI	

5.1.3.11.3 Void

5.1.3.11.4 Void

5.1.3.12 Transmit OFF power

5.1.3.12.1 Transmit OFF power for Single Carrier

5.1.3.12.1.1 Method of Test

5.1.3.12.1.1.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in Table 5.1.3.12.1.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in ETSI TS 138 521-1 [1], clause A.2. Configurations of PDSCH and PDCCH before measurement are specified in ETSI TS 138 521-1 [1], clause C.2.

Table 5.1.3.12.1.1.1-1: Test Configuration Table

	Initial Conditions					
	ent as specified in ETSI TS 138 508-1 [4],	Normal, TL/VL, TL/VH, TH/VL,	TH/VH			
clause 4.1						
	es as specified in ETSI TS 138 508-1 [4],	Low range, Mid range, High rar	nge (note 2)			
clause 4.3.1						
Test Channel E	Bandwidths as specified in ETSI	Lowest, Mid, Highest				
TS 138 508-1 [4], clause 4.3.1					
Test SCS as sp	pecified in Table 1.1-6	Lowest, Highest				
	Test Parameters for	Channel Bandwidths				
Test ID	Downlink Configuration	Uplink Configuration				
	N/A for minimum output power	Modulation	RB allocation (note 1)			
1 test case		DFT-s-OFDM QPSK	Inner Full			
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 of ETSI TS 138 521-1 [1].						
NOTE 2: For NR band n28, 30 MHz test channel bandwidth is tested with Low range and High range test						
frequ	frequencies.					

1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4] annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.

- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1, C.2 of ETSI TS 138 521-1 [1], and uplink signals according to clauses G.0, G.1, G.2 and G.3.0 of ETSI TS 138 521-1 [1].
- 4) The UL Reference Measurement Channel is set according to Table 5.1.3.12.1.1.1-1.
- 5) Propagation conditions are set according to ETSI TS 138 521-1 [1], clause B.0.
- 6) Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.3.3.2.4.3 of ETSI TS 138 521-1 [1].

5.1.3.12.1.1.2 Test procedure

- 1) SS sends uplink scheduling information via PDCCH DCI format 0_1 with TPC command 0 dB for C_RNTI to schedule the UL RMC according to Table 5.1.3.12.1.1.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The UL assignment is such that the UE transmits on slots 8 for 15 kHz SCS, on slots 8 and 18 for 30 kHz SCS and on slots 17 and 37 for 60 kHz SCS.
- 2) Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3) Measure the UE transmission OFF power during the slot prior to the PUSCH transmission, excluding a transient period of 10 µs at the end of the slot.
- 4) Measure the output power of the UE PUSCH transmission during one slot.
- 5) Measure the UE transmission OFF power during the slot following the PUSCH transmission, excluding a transient period of 10 µs at the beginning of the slot.

5.1.3.12.1.2 Test requirements

The results obtained shall be compared to the limits in clause 4.1.2.13.1.2 in order to show compliance.

5.1.3.12.2	Void
5.1.3.12.3	Void
5.1.3.12.4	Void
5.1.3.12.5	Transmit OFF power for UL-MIMO
5.1.3.12.5.1	Method of Test
5.1.3.12.5.1.1	Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 1.1-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in Table 5.1.3.12.5.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 of ETSI TS 138 521-1 [1]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-1 [1].

Table 5.1.3.12.5.1.1-1: Test Configuration Table

	Initial Conditions					
Test Environment as specified in ETSI		Normal, TL/VL, TL/VH, TH/VL, TH/VH				
TS 138 508-1 [4], clause 4.1					
Test Frequencie	s as specified in ETSI	Low range, Mid range, High range				
TS 138 508-1 [4						
Test Channel Ba	andwidths as specified in ETSI	Lowest, Mid, Highest	Lowest, Mid, Highest			
TS 138 508-1 [4], clause 4.3.1					
Test SCS as spe	ecified in Table 1.1-6	Lowest, Highest				
	Test Param	neters for Channel Bandwidths				
Test ID Downlink Configuration		Uplink Configuration				
	N/A for minimum output power	Modulation	RB allocation (note)			
1 test case		CP-OFDM QPSK	Inner Full			
NOTE: The specific configuration of each RB allocation is defined in Table 6.1-1 of ETSI TS 138 521-1 [1].						

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], Annex A, Figure A.3.1.1.2 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1, C.2 of ETSI TS 138 521-1 [1], and uplink signals according to clauses G.0, G.1, G.2 and G.3.0 of ETSI TS 138 521-1 [1].
- 4) The UL Reference Measurement Channel is set according to Table 5.1.3.12.5.1.1-1.
- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-1 [1].
- 6) Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.3D.3.4.3 of ETSI TS 138 521-1 [1].

5.1.3.12.5.1.2 Test procedure

- 1) SS sends uplink scheduling information via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.1.3.12.5.1.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The UL assignment is such that the UE transmits on slots 8 for 15 kHz SCS, on slots 8 and 18 for 30 kHz SCS and on slots 17 and 37 for 60 kHz SCS. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in ETSI TS 138 508-1 [4], clause 4.3.6.1.1.2.
- 2) Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3) Measure the UE transmission OFF power at each antenna connectors during the slot prior to the PUSCH transmission, excluding a transient period of 10 µs in the end of the slot.
- Measure the sum output power at two transmit antenna connectors of the UE PUSCH transmission during one slot.
- 5) Measure the UE transmission OFF power at each antenna connectors during the slot following the PUSCH transmission, excluding a transient period of 10 µs at the beginning of the slot.

5.1.3.12.5.2 Test requirements

The results obtained shall be compared to the limits in clause 4.1.2.13.5.2 in order to show compliance.

5.2 Testing for compliance with technical requirements for Frequency Range 2

5.2.1 Environmental conditions for testing

Tests defined in the present document shall be carried out at representative points within the boundary limits of the operational environmental profile defined by its intended use.

Where technical performance varies subject to environmental conditions, tests shall be carried out under a sufficient variety of environmental conditions (within the boundary limits of the operational environmental profile defined by its intended use) to give confidence of compliance for the affected technical requirements.

All tests shall be conducted using normal test conditions except where otherwise stated. For guidance on the use of other conditions to be used in order to show compliance reference can be made to ETSI TS 138 521-2 [2], clause F.1.1.

5.2.2 Interpretation of the measurement results

The interpretation of the results recorded in a test report for the measurements described in the present document shall be as follows:

- the measured value related to the corresponding limit will be used to decide whether an equipment meets the requirements of the present document;
- the value of the measurement uncertainty for the measurement of each parameter shall be included in the test report.

For the test methods, according to the present document, the measurement uncertainty figures shall be calculated and shall correspond to an expansion factor (coverage factor) k = 1,96 (which provide a confidence level of respectively 95 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)). Principles for the calculation of measurement uncertainty are contained in ETSI TR 100 028 [i.5], in particular in annex C of the ETSI TR 100 028-2 [i.5]. For guidance on other measurement conditions reference can be made to annexes A to M of ETSI TS 138 521-2 [2].

Recommended values for the maximum measurement uncertainty based on this expansion factor can be found in annex D.

5.2.3 Essential radio test suites

5.2.3.0 General

This clause describes the test suites that shall be used for NR FDD and TDD.

5.2.3.1 Transmitter Maximum Output Power

5.2.3.1.1 Transmitter maximum output power for Single Carrier

5.2.3.1.1.1 Method of test

5.2.3.1.1.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 1.2-6. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in Table 5.2.3.1.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 in ETSI TS 138 521-2 [2]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 in ETSI TS 138 521-2 [2].

			Default (Conditions		
	nent as spe	cified in ET	SI TS 138 508-1 [4], Normal, TL, TH		
clause 4.1						
Test Frequen	cies as spe	cified in ET	SI TS 138 508-1 [4	4], Low range, Mid Ra	ange, High range	
clause 4.3.1						
Test Channel	Bandwidths	s as specific	ed in ETSI	Lowest, 100 MHz,	Highest	
TS 138 508-1	[4], clause	4.3.1 [.]				
Test SCS as	specified in	Table 1.2-6	6	120 kHz	120 kHz	
Test Parameters						
Test ID	ChBw	SCS	Downlink	Uplink	Configuration	
			Configuration		· · · · ·	
		Default		Modulation	RB allocation (note)	
1	50			DFT-s-OFDM QPSK	Inner_Full for PC3	
2	100					
3	200	1				
4	400	1				
NOTE: The	e specific co	onfiguration	of each RF alloca	ation is defined in Table 6	5.1-1 in ETSI TS 138 521-2 [2]	
	PC3.	-				

- 1) Connection between SS and UE is shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clause C, and uplink signals according to clauses G. in ETSI TS 138 521-2 [2].
- 4) The UL Reference Measurement Channels are set according to Table 5.2.3.1.1.1.1-1.
- 5) Propagation conditions are set according to clause B.0 in ETSI TS 138 521-2 [2].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.2.1.1.4.3 in ETSI TS 138 521-2 [2].

5.2.3.1.1.1.2 Test procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.2.3.1.1.1.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Messages to configure the appropriate uplink modulation in clause 6.2.1.1.4.3 in ETSI TS 138 521-2 [2].
- 2) Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in clause K.1.1 in ETSI TS 138 521-2 [2]. Allow at least BEAM_SELECT_WAIT_TIME (NOTE 1) for the UE Tx beam selection to complete.
- 3) Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms starting from the first TPC command in this step to ensure that the UE transmits at its maximum output power. Allow at least BEAM_SELECT_WAIT_TIME (see note) for the UE Tx beam selection to complete.
- 4) SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4], clause 4.9.2 using condition Tx only.
- 5) Measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 4.2.2.2.1.2-3. The EIRP test procedure is defined in clause K.1.3 in ETSI TS138 521-2 [2]. The measuring duration is one active uplink subframe. EIRP is calculated considering both polarizations, theta and phi.
- 6) SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4], clause 4.9.3.

NOTE: The BEAM_SELECT_WAIT_TIME default value is defined in clause K.1.1 in ETSI TS 138 521-2 [2].

5.2.3.1.1.2 Test requirements

The results obtained in step 5 shall be compared to the limits in Table 4.2.2.2.1.2-3 in order to show compliance.

5.2.3.2 Transmitter Minimum Output Power

5.2.3.2.1 Transmitter minimum output power for Single Carrier

5.2.3.2.1.1 Method of test

5.2.3.2.1.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.2-6. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in Table 5.2.3.2.1.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 in ETSI TS 138 521-2 [2]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 in ETSI TS 138 521-2 [2].

Table 5.2.3.2.1.1.1-1: Test Configuration Table

	Initial Conditions					
Test Environ	ment as specified in ETSI TS 138 508-1 [4],	Normal, TL, TH				
clause 4.1						
Test Frequer	ncies as specified in ETSI TS 138 508-1 [4],	Low range, Mid range, Hig	h range			
clause 4.3.1						
Test Channe	I Bandwidths as specified in ETSI	Lowest, Mid, Highest				
TS 138 508-1	1 [4], clause 4.3.1					
Test SCS as	specified in Table 1.2-6.	Highest				
	Test Pa	rameters				
	Downlink Configuration	Uplink	Configuration			
Test ID		Modulation	RB allocation (note)			
1		DFT-s-OFDM QPSK	Outer_Full			
NOTE: Th	NOTE: The specific configuration of each RB allocation is defined in Table 6.1-1 in ETSI TS 138 521-2 [2] for PC 3.					

- 1) Connection between SS and UE is shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to annex C in ETSI TS 138 521-2 [2] and uplink signals according to annex G in ETSI TS 138 521-2 [2].
- 4) The UL Reference Measurement Channel is set according to Table 5.2.3.2.1.1.1-1.
- 5) Propagation conditions are set according to clause B.0 in ETSI TS 138 521-2 [2].
- 6) Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.3.1.4.3 in ETSI TS 138 521-2 [2].

5.2.3.2.1.1.2 Test procedure

1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.2.3.2.1.1.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.

- 2) Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in clause K.1.1 in ETSI TS 138 521-2 [2]. Allow at least BEAM_SELECT_WAIT_TIME (note) for the UE Tx beam selection to complete.
- 3) Send continuously uplink power control "down" commands in every uplink scheduling information to the UE; allow at least 200 ms starting from the first TPC command in this step to ensure that the UE transmits at its minimum output power. Allow at least BEAM_SELECT_WAIT_TIME (see note) for the UE Tx beam selection to complete.
- 4) SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4], clause 4.9.2 using condition Tx only.
- 5) Measure UE EIRP in the Tx beam peak direction in the measurement bandwidth specified Table 4.2.2.3.1.2-2 for the specific channel bandwidth under test. The EIRP test procedure is defined in clause K 1.3 in ETSI TS 138 521-2 [2]. The measuring duration is one active subframe (1 ms). EIRP is calculated considering both polarizations, theta and phi. For TDD, only slots consisting of only UL symbols are under test.
- 6) SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4], clause 4.9.3.

NOTE: The BEAM_SELECT_WAIT_TIME default value is defined in clause K.1.1 in ETSI TS 138 521-2 [2].

5.2.3.2.1.2 Test requirements

The results obtained shall be compared to the limits in clause 4.2.2.3.1.2 in Table 4.2.2.3.1.2-2 in order to show compliance.

5.2.3.3 Transmitter Spectrum Emission Mask

5.2.3.3.1 Transmitter spectrum emission mask for Single Carrier

5.2.3.3.1.1 Method of test

5.2.3.3.1.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 1.2-6. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in Table 5.2.3.3.1.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 in ETSI TS 138 521-2 [2]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 in ETSI TS 138 521-2 [2].

Table 5.2.3.3.1.1.1-1: Test Configuration Table

Initial Conditions						
Test Environr	nent as specified in ETSI TS 138 508-1 [4],	Normal				
Test Frequen clause 4.3.1	cies as specified in ETSI TS 138 508-1 [4],	Mid range				
	Bandwidths as specified in ETSI [4], clause 4.3.1	Lowest, Highest				
Test SCS as	specified in Table 1.2-6	Highest				
	Test Pa	rameters				
Test ID	Downlink Configuration	Uplink Con	Configuration			
		Modulation	RB allocation (note 1)			
1		DFT-s-OFDM PI/2 BPSK	Outer_Full			
2		DFT-s-OFDM QPSK	Outer_Full			
3		DFT-s-OFDM16QAM	Outer_Full			
4		DFT-s-OFDM 64QAM	Outer_Full			
5		CP-OFDM QPSK	Outer Full			

NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1 in ETSI TS 138 521-2 [2] for PC3.

NOTE 2: All test points in this table should also exist in Table 6.2.2.4.1-7, Table 6.2.2.4.1-8, Table 6.2.2.4.1-9 in ETSI
TS 138 521-2 [2] for PC3.

- 1) Connection between SS and UE is shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.3.1.1. for TE diagram and clause A.3.4.1.1 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to annex C in ETSI TS 138 521-2 [2], and uplink signals according to annex G in ETSI TS 138 521-2 [2].
- 4) The UL Reference Measurement Channels are set according to Table 5.2.3.3.1.1.1-1.
- 5) Propagation conditions are set according to clause B.0 in ETSI TS 138 521-2 [2].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.5.2.1.4.3 in ETSI TS 138 521-2 [2].

5.2.3.3.1.1.2 Test procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.2.3.3.1.1.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2) Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in clause K.1.1 ETSI TS 138 521-2 [2]. Allow at least BEAM_SELECT_WAIT_TIME (see note 2) for the UE Tx beam selection to complete.
- 3) Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms for the UE to reach maximum output power. Allow at least BEAM_SELECT_WAIT_TIME (see note 2) for the UE Tx beam selection to complete.
- 4) SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4], clause 4.9.2 using condition Tx only.

- 5) Measure the TRP of the transmitted signal with a measurement filter of bandwidths according to Table 4.2.2.4.1.2-1. The centre frequency of the filter shall be stepped in continuous steps according to the same table. TRP shall be recorded for each step. The measurement period shall capture the active time slots. Total radiated power is measured according to TRP measurement procedure defined in annex K in ETSI TS 138 521-2 [2]. The measurement grid used for TRP measurement defined in annex M in ETSI TS 138 521-2 [2]. TRP is calculated considering both polarizations, theta and phi.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in Table 5.2.3.3.1.1.1-1, send an NR RRCReconfiguration message according to ETSI TS 138 508-1 [4], clause 4.6.3, Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.
- NOTE 2: The BEAM_SELECT_WAIT_TIME default value is defined in clause K.1.1 in ETSI TS 138 521-2 [2].

5.2.3.3.1.2 Test requirements

The results obtained in step 5) shall be compared to the limits in Table 4.2.2.4.1.2-1 in clause 4.2.2.4.1.2 in order to show compliance.

- 5.2.3.4 Transmitter Adjacent Channel Leakage Power Ratio
- 5.2.3.4.1 Transmitter adjacent channel leakage power ratio
- 5.2.3.4.1.1 Method of test
- 5.2.3.4.1.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 1.2-6. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in Table 5.2.3.4.1.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 in ETSI TS 138 521-2 [2]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 in ETSI TS 138 521-2 [2].

Table 5.2.3.4.1.1.1-1: Test Configuration Table

Default Conditions						
Test Enviror	ment as s	specified in	n ETSI TS	138 508-1 [4],	Normal	
clause 4.1		•				
Test Freque	ncies as s	specified in	n ETSI TS	138 508-1 [4],	Low range, Mid range, High ra	ange
clause 4.3.1		•				
Test Channe	el Bandwid	dths as sp	ecified in I	ETSI	Lowest Highest	
TS 138 508-	·1 [4], clau	ise 4.3.1			_	
Test SCS as	specified	in Table	1.2-6		Lowest, Highest	
				Test Para		
Test ID	Freq	ChBw	SCS	Downlink	Uplink Conf	figuration
				Configuration		
		Default	Default		Modulation	RB allocation (note 1)
1	Low				DFT-s-OFDM PI/2 BPSK	Outer_1RB_Left
2	High				DFT-s-OFDM PI/2 BPSK	Outer_1RB_Right
3	Mid				DFT-s-OFDM PI/2 BPSK	Outer_Full
4	Low				DFT-s-OFDM QPSK	Outer_1RB_Left
5	High				DFT-s-OFDM QPSK	Outer_1RB_Right
6	Mid				DFT-s-OFDM QPSK	Outer_Full
7	Low				DFT-s-OFDM 16 QAM	Outer_1RB_Left
8	High				DFT-s-OFDM 16 QAM	Outer_1RB_Right
9	Mid				DFT-s-OFDM 16 QAM	Outer_Full
10	Low				DFT-s-OFDM 64 QAM	Outer_1RB_Left
11	High				DFT-s-OFDM 64 QAM	Outer_1RB_Right
12	Mid				DFT-s-OFDM 64 QAM	Outer_Full
13	Low				CP-OFDM QPSK	Outer_1RB_Left
14	High				CP-OFDM QPSK	Outer_1RB_Right
15	Mid				CP-OFDM QPSK	Outer_Full
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 for PC3 in ETSI TS 138 521-2 [2]. NOTE 2: Following Test IDs shall be skipped for PC3: Test ID 10-12 for 100 MHz Channel Bandwidth.						

- 1) Connection between SS and UE is shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.3.1.1 for TE diagram and clause A.3.4.1.1 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.

NOTE 3: All test points in this table should also exist in Table 6.2.2.4.1-8 in in ETSI TS 138 521-2 [2]

- 3) Downlink signals are initially set up according to annex C in ETSI TS 138 521-2 [2], and uplink signals according to annex G in ETSI TS 138 521-2 [2].
- 4) The UL Reference Measurement Channels are set according to Table 5.2.3.4.1.1.1-1.
- 5) Propagation conditions are set according to clause B.0 in ETSI TS 138 521-2 [2].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release On, Test Mode On and Test Loop Function On according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.5.2.3.4.3 in ETSI TS 138 521-2 [2].

5.2.3.4.1.1.2 Test procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table.5.2.3.4.1.1.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2) Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in clause K.1.1 in ETSI TS 138 521-2 [2]. Allow at least BEAM_SELECT_WAIT_TIME (see note 2) for the UE Tx beam selection to complete.
- 3) Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms for the UE to reach maximum output power. Allow at least BEAM_SELECT_WAIT_TIME (see note 2) for the UE Tx beam selection to complete.
- 4) SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4], clause 4.9.2 using condition Tx only.

- 5) Measure EIRP of the transmitted signal in the Tx beam peak direction for the assigned NR channel with a rectangular measurement filter with bandwidths according to Table 4.2.2.5.1.2-1. EIRP measurement procedure defined in annex K in ETSI TS 138 521-2 [2]. EIRP is calculated considering both polarizations, theta and phi.
- 6) Measure EIRP of the first NR adjacent channel on both the lower and upper side of the assigned NR channel, respectively using a rectangular measurement filter with bandwidths according to Table 4.2.2.5.1.2-1. EIRP measurement procedure defined in annex K in ETSI TS 138 521-2 [2]. EIRP is calculated considering both polarizations, theta and phi.
- 7) Calculate the ratios of the power between the values measured in step 5 over step 6 for lower and upper NR ACLR, respectively.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration Table 5.2.3.4.1.1.1-1, send an NR RRCReconfiguration message according to ETSI TS 138 508-1 [4], clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.
- NOTE 2: The BEAM_SELECT_WAIT_TIME default value is defined in clause K.1.1 in ETSI TS 138 521-2 [2].

5.2.3.4.1.2 Test Requirement

The measured NR ACLR, derived in step 7, shall be higher than the limits in Table 4.2.2.5.1.2-1 in clause 4.2.2.5.1.2 in order to show compliance.

5.2.3.5 Transmitter Spurious Emissions

- 5.2.3.5.1 Transmitter spurious emissions for single carrier
- 5.2.3.5.1.1 Method of test
- 5.2.3.5.1.1.1 General spurious emission

5.1.3.5.1.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the Subscriber Station (SS) to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 1.2-6. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in Table 5.2.3.5.1.1.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 in ETSI TS 138 521-2 [2].

Table 5.2.3.5.1.1.1.1-1: Test Configuration Table

	Initial Conditions						
Test Environ	ment as specified in ETSI TS 138 508-1 [4],	Normal					
clause 4.1							
Test Frequer	ncies as specified in ETSI TS 138 508-1 [4],	Low range, High range (note	2)				
clause 4.3.1							
Test Channe	I Bandwidths as specified in ETSI	Highest					
TS 138 508-1	1 [4], clause 4.3.1						
Test SCS as	specified in Table 1.2-6	120 kHz					
	Test Par	rameters					
Test ID	Downlink Configuration	Uplink Configuration					
		Modulation	RB allocation				
			(note 1)				
1		DFT-s - OFDM QPSK	Inner_Full				
2		DFT-s - OFDM QPSK	Inner_1RB (note 3)				
_	o specific configuration of each PR allocation						

- NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 in ETSI TS 138 521-2 [2]. Common UL configuration for PC3.
- NOTE 2: When testing Low range test only in Frequency Range lower than (F_{UL_low} Δf_{OOB}) and when testing High range test only in Frequency Range higher than (F_{UL_high} + Δf_{OOB}).
- NOTE 3: When testing Low range configure uplink RB to Inner_1RB_Left and when testing High range configure uplink RB to Inner_1RB_Right.
 - 1) Connection between SS and UE is shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to annex C in ETSI TS 138 521-2 [2], and uplink signals according to annex G in ETSI TS 138 521-2 [2].
- 4) The UL Reference Measurement channels are set according to Table 5.1.3.5.1.1.1.1-1.
- 5) Propagation conditions are set according to clause B.0 in ETSI TS 138 521-2 [2].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.5.3.1.4.3 in ETSI TS 138 521-2 [2].

5.2.3.5.1.1.1.2 Test procedure

- 1) Select any of the three Alignment Options (1, 2 or 3) from Tables N.2-1 through N.2-3 in ETSI TS 138 521-2 [2] to mount the DUT inside the QZ.
- 2) If the re-positioning concept is applied, position the device in DUT Orientation 1 if the maximum beam peak direction is within zenith angular range $0^{\circ} \le \theta \le 90^{\circ}$ for the alignment option selected in step 1; position the device in DUT Orientation 2 (either Options 1 or 2) if the maximum beam peak direction is within zenith angular range $90^{\circ} < \theta \le 180^{\circ}$ for DUT Orientation 1 for the alignment option selected in step 1. If the re-positioning concept is not applied, position the device in DUT Orientation 1.
- 3) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.2.3.5.1.1.1.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 4) Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in clause K.1.1 ETSI TS 138 521-2 [2]. Allow at least BEAM_SELECT_WAIT_TIME (see note 3) for the UE Tx beam selection to complete.
- 5) Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms for the UE to reach P_{UMAX}. Allow at least BEAM_SELECT_WAIT_TIME (see note 3) for the UE Tx beam selection to complete.
- 6) SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4], clause 4.9.2 using condition Tx only.

- 7) Measure the spurious emissions as per steps outlined below with an exception to the procedure in Annex K ETSI TS 138 521-2 [2] if the re-positioning concept is applied (see note 4). Step a) is optional and applicable only if SNR (test requirement level in Table 4.2.2.6.1.2-2 minus offset value minus noise floor of the test system) ≥ 0 dB is guaranteed. During measurement the spectrum analyser shall be set to 'Detector' = RMS.
 - a) Perform coarse TRP measurements to identify spurious emission frequencies and corresponding power level according to the procedures in annex K in ETSI TS 138 521-2 [2], using coarse TRP measurement grid selection criteria as per tables 6.5.3.1.4.2-1 through 6.5.3.1.4.2-3 in ETSI TS 138 521-2 [2]. The measurement is completed in both polarizations θ and ϕ over frequency range and measurement bandwidth according to Table 4.2.2.6.1.2-2. Optionally, a larger and non-constant measurement bandwidth than that of Table 4.2.2.6.1.2-2 may be applied. The measurement period shall capture the active time slots.

For each spurious emission frequency with coarse TRP identified to be less than the offsets listed in tables 6.5.3.1.4.2-1 through 6.5.3.1.4.2-3 in ETSI TS 138 521-2 [2] from the TRP limit according to Table 4.2.2.6.1.2-2, either continue with another coarse TRP procedure and corresponding offset according to step a) or continue with fine TRP procedures according to step b).

Different coarse TRP grids and corresponding offset values may be used for different frequencies. Multiple coarse TRP grids measurements with the corresponding offset values can be performed before the fine TRP measurement grid is applied. The coarse TRP grids and offset values used shall be recorded in the test report.

- b) Measure fine TRP measurements according to procedures in annex K in ETSI TS 138 521-2 [2], using fine TRP measurement grid selection criteria as per Table M.4.5-3 in annex M in ETSI TS 138 521-2 [2], for each of the spurious emission frequency identified in step a). Apply a measurement bandwidth according to Table 4.2.2.6.1.2-2.
- 8) SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4], clause 4.9.3.
- NOTE 1: The frequency range defined in Table 4.2.2.6.1.2-2 may be split into ranges. For each range, a different test system, e.g. antenna and/or chamber, may be used. To pass the test case all verdicts of the frequency ranges should pass.
- NOTE 2: Void.
- NOTE 3: The BEAM_SELECT_WAIT_TIME default value is defined in clause K.1.1 in ETSI TS 138 521-2 [2].
- NOTE 4: If the (in-band) beam peak is within $0^{\circ} \le \theta \le 90^{\circ}$: perform first hemispherical TRP scan $(0^{\circ} \le \theta \le 90^{\circ})$ in DUT Orientation 1 and second hemispherical TRP scan $(90^{\circ} > \theta \ge 0^{\circ})$ in DUT Orientation 2. If the (in-band) beam peak is within $90^{\circ} < \theta \le 180^{\circ}$: perform first hemispherical TRP scan $(0^{\circ} \le \theta \le 90^{\circ})$ in DUT Orientation 2 and second hemispherical TRP scan $(90^{\circ} > \theta \ge 0^{\circ})$ in DUT Orientation 1. The DUT with UBF activated needs to be re-positioned during the test.

NOTE 5: Void.

5.2.3.5.1.2 Test requirements

The results obtained shall be compared to the limits in clause 4.2.2.6.1.2 in order to show compliance.

5.2.3.6 Receiver Reference Sensitivity Level

5.2.3.6.1 Receiver Sensitivity Level Single Carrier

5.2.3.6.1.1 Method of test

5.2.3.6.1.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 1.2-6. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table 5.2.3.6.1.1.1-1, Table 5.2.3.6.1.1.1-2 and Table 5.2.3.6.1.1.1-3. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 of ETSI TS 138 521-2 [2]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-2 [2].

Table 5.2.3.6.1.1.1-1: Test Configuration Table

	Initial Conditions						
Test Enviro	onment as specified in	ETSI TS 138 508-1 [4],	Normal, TL, TH				
clause 4.1							
Test Frequ	encies as specified in I	ETSI TS 138 508-1 [4],	Low range, Mid range, Hi	gh range			
clause 4.3.	1						
	nel Bandwidths as spec	cified in ETSI	Lowest, 100 MHz and Hig	phest			
	8-1 [4], clause 4.3.1						
Test SCS a	as specified in Table 1.		120 kHz				
	Test Parameters						
Test ID	Downlink C	onfiguration	Uplink Configuration				
	Modulation RB allocation		Modulation	RB allocation			
1	CP-OFDM QPSK	Full RB	DFT-s-OFDM QPSK	REFSENS (note 2)			
	(note 1)						
NOTE 1:	NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in						
	Table 5.2.3.6.1.1.1-2.						
	2: REFSENS refers to Table 5.2.3.6.1.1.1-3 which defines uplink RB configuration and start RB						
	location for each SCS,	channel BW and NR bar	nd.				

Table 5.2.3.6.1.1.1-2: Downlink Configuration of each RB allocation

Channel Bandwidth	SCS kHz	LCRBmax	RB allocation (LCRB@RBstart)			
50 MHz	120	32	32@0			
100 MHz	120	64	64@0			
200 MHz	120	128	128@0			
400 MHz	120	256	256@0			
NOTE: Test 0	Channel Bandwi	annel Bandwidths are checked separately for each NR band,				
the applicable channel bandwidths are specified in Table 1.2-6.						

Table 5.2.3.6.1.1.1-3: Uplink configuration for reference sensitivity, LCRB@RBstart format

Operating Band	SCS kHz	50 MHz	100 MHz	200 MHz	400 MHz	Duplex Mode
n257	120	32@0	64@0	128@0	256@0	TDD
n258	120	32@0	64@0	128@0	256@0	TDD

- 1) Connection between SS and UE is shown in ETSI TS 138 508-1 [4] annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1 and C.3.1 of ETSI TS 138 521-2 [2], and uplink signals according to clauses G.0, G.1 and G.3.1 of ETSI TS 138 521-2 [2].
- 4) The DL and UL Reference Measurement channels are set according to Table 5.2.3.6.1.1.1-1, Table 5.2.3.6.1.1.1-2 and Table 5.2.3.6.1.1.1-3.
- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-2 [2].
- 6) Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in ETSI TS 138 508-1 [4], clause 4.6 with TRANSFORM_PRECODER_ENABLED condition in Table 4.6.3-118 PUSCH-Config.

5.2.3.6.1.1.2 Test procedure

- 1) SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 5.2.3.6.1.1.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 5.2.3.6.1.1.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3) Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms for the UE to reach $P_{\rm UMAX}$.
- 4) Set the UE in the Rx beam peak direction found with a 3D EIS scan as performed in clause K.1.2 of ETSI TS 138 521-2 [2]. Allow at least BEAM_SELECT_WAIT_TIME (see note) for the UE Rx beam selection to complete.
- 5) Perform EIS procedure as stated in clause K.1.4 of ETSI TS 138 521-2 [2] to calculate "averaged EIS". At each power level, by changing the power level of the wanted signal with a step size of 0,2 dB (coarse and fine searches are not precluded as long as the fine search is using the 0,2 dB step size near the sensitivity level). For each power step measure the average throughput for a duration sufficient to achieve statistical significance according to clause H.2 of ETSI TS 138 521-2 [2]. The downlink power step size shall be no more than 0,2 dB when the RF power level is near the sensitivity level.
- 6) Compare the dB value of the "averaged EIS" value corresponding to the Rx beam peak direction identified in step 5 to the test requirement in clause 4.2.2.7.1.2. If the EIS value is lower or equal to the value in clause 4.2.2.7.1, pass the UE. Otherwise fail the UE.

NOTE: The BEAM_SELECT_WAIT_TIME default value is defined in clause K.1.1 of ETSI TS 138 521-2 [2].

5.2.3.6.1.2 Test requirements

The results obtained in step 6) shall be compared to the limits in clause 4.2.2.7.1.2 in order to show compliance.

5.2.3.7 Receiver Adjacent Channel Selectivity (ACS)

5.2.3.7.1 Receiver Adjacent Channel Selectivity Single Carrier

5.2.3.7.1.1 Method of test

5.2.3.7.1.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 1.2-6. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in Table 5.2.3.6.1.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clauses A.2 and A.3 of ETSI TS 138 521-2 [2]. The details of the OCNG patterns used are specified in annex A of ETSI TS 138 521-2 [2]. The details of the OCNG patterns used are specified in clause A.5 of ETSI TS 138 521-2 [2]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-2 [2].

Table 5.2.3.7.1.1.1-1: Test Configuration

	Initial Conditions						
1 1			Normal				
clause 4.1							
Test Freque	encies as specified in ETSI	TS 138 508-1 [4],	Mid ra	nge			
clause 4.3.1							
Test Chann	Test Channel Bandwidths as specified in ETSI			50 MHz, 100 MHz			
TS 138 508-1 [4], clause 4.3.1							
Test SCS as specified in Table 1.2-6		120 kHz					
		Test Para	ameter	s			
Test ID Downlink Configuration				Uplink Conf	figuration		
	Modulation RB allocation		1	Modulation	RB allocation		
1	1 CP-OFDM QPSK note			DFT-s-OFDM QPSK	note		
NOTE: T	NOTE: The specific configuration of each RB allocation is defined in Table 5.2.3.6.1.1.1-1.						

- 1) Connection between SS and UE is shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.4.1 for TE diagram and clause A.3.4 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to annex C of ETSI TS 138 521-2 [2], and uplink signals according to annex G of ETSI TS 138 521-2 [2].
- 4) The DL and UL Reference Measurement channels are set according to Table 5.2.3.7.1.1.1-1.
- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-2 [2].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are according to ETSI TS 138 508-1 [4], clause 4.6 with TRANSFORM_PRECODER_ENABLED condition in Table 4.6.3-118 PUSCH-Config.

5.2.3.7.1.1.2 Test procedure

- Set the UE in the Rx beam peak direction found with a 3D EIRP scan as performed in clause K.1.2 of ETSI TS 138 521-2 [2]. Allow at least BEAM_SELECT_WAIT_TIME (note) for the UE Rx beam selection to complete.
- 2) SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 5.2.3.7.1.1.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 3) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 5.2.3.7.1.1.1-1. Since the UL has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 4) Send Uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power measured by the test system is within the Uplink power control window in Table 5.2.3.7.1.1.2-1 of the target power level in Table 4.2.2.8.1.2-2 (Case 1) or Table 4.2.2.8.1.2-3 (Case 2) for at least the duration of the throughput measurement.

Table 5.2.3.7.1.1.2-1: Uplink power control window for FR2 standalone

Carrier centre frequency, F _c	Power Class	Uplink power control window (dB)
23,45 GHz < F _C ≤ 32,125 GHz	PC3	-4,89 dB to 8,59 dB

- 5) Perform Blocking measurement procedure as stated in clause K.1.8 of ETSI TS 138 521-2 [2] using Downlink signal level and Interferer signal level as defined in Table 4.2.2.8.1-2 (Case 1). Modulated interferer signal characteristics as defined in annex D of ETSI TS 138 521-2 [2]. with frequency below the wanted signal. Measure throughput for a duration sufficient to achieve statistical significance according to clause H.2 ETSI TS 138 521-2 [2].
- 6) Repeat step 5 using an interfering signal frequency above the wanted signal in Case 1.

- 7) Perform Blocking measurement procedure as stated in clause K.1.8 of ETSI TS 138 521-2 [2] using Downlink signal level and Interferer signal level as defined in Table 4.2.2.8.1-3 (Case 2). Modulated interferer signal characteristics as defined in annex D of ETSI TS 138 521-2 [2] with frequency below the wanted signal. Measure throughput for a duration sufficient to achieve statistical significance according to clause H.2 of ETSI TS 138 521-2 [2].
- 8) Repeat step 7 using an interfering signal frequency above the wanted signal in Case 2.
- 9) Repeat for applicable channel bandwidths and operating band combinations in both Case 1 and Case 2.

NOTE: The BEAM_SELECT_WAIT_TIME default value is defined in clause K.1.1 of ETSI TS 138 521-2 [2].

5.2.3.7.1.2 Test requirements

The results obtained shall be compared to the limits in clause 4.2.2.8.1 in Table 4.2.2.8.1.2-1 in order to show compliance.

5.2.3.8 Receiver Blocking Characteristics

5.2.3.8.1 Receiver In-Band Blocking Single Carrier

5.2.3.8.1.1 Method of test

5.2.3.8.1.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.2-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 5.2.3.8.1.1.1-1. The details of the uplink Reference Measurement Channels (RMC) are specified in clauses A.2 and A.3 of ETSI TS 138 521-2 [2]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-2 [2]. The details of the OCNG patterns used are specified in clause A.5 of ETSI TS 138 521-2 [2].

Table 5.2.3.8.1.1.1-1: Test Configuration Table

	Initial Conditions						
Test Environment as specified in ETSI TS 138 508-1 [4],			Noi	Normal			
clause 4.1							
Test Freque	encies as specified in ETSI	TS 138 508-1 [4],	Mid	l range			
clause 4.3.	1						
Test Chann	Test Channel Bandwidths as specified in ETSI			50 MHz, 100 MHz			
TS 138 508	3-1 [4], clause 4.3.1						
Test SCS as specified in Table 1.2-6			120 kHz				
		Test Para	met	ers			
Test ID Downlink Configuration				Uplink Configu	ıration		
Modulation RB allocation		Ī	Modulation	RB allocation			
1	CP-OFDM QPSK	note	Ī	DFT-s-OFDM QPSK	note		
NOTE:	NOTE: The specific configuration of each RB allocation is defined in Table 5.2.3.6.1.1.1-1.						

- 1) Connection between SS and UE is shown in ETSI TS 138 508-1 [4], annex A, in Figure A.3.1.4.1 for TE diagram and clause A.3.4 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C of ETSI TS 138 521-2 [2], and uplink signals according to clauses G of TS 138 521-2 [2].
- 4) The DL and UL Reference Measurement channels are set according to Table 5.2.3.8.1.1.1-1.

- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-2 [2].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are according to ETSI TS 138 508-1 [4], clause 4.6 with TRANSFORM PRECODER ENABLED condition in Table 4.6.3-118 PUSCH-Config.

5.2.3.8.1.1.2 Test procedure

- Set the UE in the Rx beam peak direction found with a with a 3D EIRP scan as performed in clause K1.2 of ETSI TS 138 521-2 [2]. Allow at least BEAM_SELECT_WAIT_TIME (note) for the UE Rx beam selection to complete.
- 2) SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 5.2.3.8.1.1.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 3) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 5.2.3.8.1.1.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 4) Send Uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power measured by the test system is within the Uplink power control window in Table 5.2.3.7.1.1.2-1 of the target power level in Table 4.2.2.9.1.2-1 for at least the duration of the throughput measurement.
- 5) Perform the Blocking measurement procedure as stated in clause K.1.8 of ETSI TS 138 521-2 [2] using Downlink signal level and Interferer signal level as defined in Table 4.2.2.9.1.2-1. Modulated interferer signal characteristics as defined in annex D of ETSI TS 138 521-2 [2]. Measure throughput for a duration sufficient to achieve statistical significance according to clause H.2 of ETSI TS 138 521-2 [2].
- 6) Repeat steps using interfering signals specified in Table 4.2.2.9.1.2-1. The ranges are covered in steps equal to the interferer bandwidth. Interferer frequencies should be chosen starting with an offset nearest to the centre frequency and sweep outwards towards the band edges. In order to ensure that full range is tested for interferer frequency, run last test steps at frequency equal to F_{Interferer} range limit defined at the corresponding band edge.

NOTE: The BEAM_SELECT_WAIT_TIME default value is defined in clause K.1.1 in ETSI TS 138 521-2 [2].

5.2.3.8.1.2 Test requirements

The results obtained in step 5) shall be compared to the limits in Table 4.2.2.9.1.2-1 in order to show compliance.

5.2.3.9 Receiver Spurious Emissions

5.2.3.9.1 Receiver Spurious Emissions Single Carrier

5.2.3.9.1.1 Method of test

5.2.3.9.1.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.2-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 5.2.3.9.1.1.1-1. The details of the uplink and downlink Reference Measurement Channels (RMCs) are specified in clauses A.2 and A.3 of ETSI TS 138 521-2 [2]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 of ETSI TS 138 521-2 [2].

Table 5.2.3.9.1.1.1-1: Test Configuration Table

Default Conditions						
Test Environment as specified in ETSI TS 138 508-1 [4],			Normal			
clause 4.1						
Test Freque	encies as specified in ET	SI TS 138 508-1 [4],	Low range, Mid range, H	ligh range		
clause 4.3.1			-			
Test Channel Bandwidths as specified in ETSI			Highest			
TS 138 508-1 [4], clause 4.3.1			-			
Test SCS as specified in Table 1.2-6		Highest				
	Test Parameters					
Downlink Configuration			Uplink Configuration			
Test ID	Mod'n	RB allocation	Mod'n	RB allocation		
1	=	-	-			
NOTE: The specific configuration of uplink and downlink are defined in Table 5.2.3.6.1.1.1-1.						

- 1) Connection between SS and UE is shown in ETSI TS 138 508-1 [4], Annex A, in Figure A.3.1.5.1 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to annex C of ETSI TS 138 521-2 [2], and uplink signals according to annex G of ETSI TS 138 521-2 [2].
- 4) The DL and UL Reference Measurement channels are set according to Table 5.2.3.9.1.1.1-1.
- 5) Propagation conditions are set according to clause B.0 of ETSI TS 138 521-2 [2].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 7.5.4.3. in ETSI TS 138 521-2 [2].

5.2.3.9.1.1.2 Test procedure

- 1) Select any of the three Alignment Options (1, 2, or 3) from Tables N.2-1 through N.2-3 in ETSI TS 138 521-2 [2] to mount the DUT inside the QZ.
- 2) If the re-positioning concept is applied, position the device in DUT Orientation 1 if the maximum beam peak direction is within zenith angular range $0^{\circ} \le \theta \le 90^{\circ}$ for the alignment option selected in step 1° ; position the device in DUT Orientation 2 (either Options 1 or 2) if the maximum beam peak direction is within zenith angular range $90^{\circ} < \theta \le 180^{\circ}$ for DUT Orientation 1 for the alignment option selected in step 1). If the re-positioning concept is not applied, position the device in DUT Orientation 1.
- 3) Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in clause K.1.1 in ETSI TS 138 521-2 [2] using the uplink configuration in clause 5.2.3.1.1. Allow at least BEAM_SELECT_WAIT_TIME (note 3) for the UE Tx beam selection to complete.
- 4) SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4], clause 4.9.2 using condition Tx only.
- 5) Measure the spurious emissions as per steps outlined below with an exception to the procedure in Annex K in ETSI TS 138 521-2 [2] if the re-positioning concept is applied (see note 4). Step a) is optional and applicable only if SNR (test requirement level in Table 4.2.2.10.1.2-1 minus offset value minus noise floor of the test system) ≥ 0 dB is guaranteed.

a) Perform coarse TRP measurements to identify spurious emission frequencies and corresponding power level according to the procedures in Annex K of ETSI TS 138 521-2 [2], using coarse TRP measurement grid selection criteria as per tables 6.5.3.1.4.2-1 through 6.5.3.1.4.2-3 in ETSI TS 138 521-2 [2]. The measurement is completed in both polarizations θ and ϕ over frequency range and measurement bandwidth according to Table 4.2.2.10.1.2-1. Optionally, a larger and non-constant measurement bandwidth than that of Table 4.2.2.10.1.2-1 may be applied. The measurement period shall capture the active time slots.

For each spurious emission frequency with coarse TRP identified to be less than the offsets listed in Tables 6.5.3.1.4.2-1 through 6.5.3.1.4.2-3 in ETSI TS 138 521-2 [2] from the TRP limit according to Table 4.2.2.10.1.2-1, either continue with another coarse TRP procedure and corresponding offset according to step a) or continue with fine TRP procedures according to step b).

Different coarse TRP grids and corresponding offset values may be used for different frequencies. Multiple coarse TRP grids measurements with the corresponding offset values can be performed before the fine TRP measurement grid is applied. The coarse TRP grids and offset values used shall be recorded in the test report.

- b) Measure fine TRP measurements according to procedures in annex K of ETSI TS 138 521-2 [2], using fine TRP measurement grid selection criteria as per Table M.4.5-3 in annex M of ETSI TS 138 521-2 [2], for each of the spurious emission frequency identified in step a). Apply a measurement bandwidth according to Table 4.2.2.10.1.2-1.
- 6) SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4], clause 4.9.3.
- NOTE 1: The frequency range defined in Table 4.2.2.10.1.2-1 may be split into ranges. For each range, a different test system, e.g. antenna and/or chamber, may be used. To pass the test case all verdicts of the frequency ranges should pass.
- NOTE 2: Void.
- NOTE 3: The BEAM_SELECT_WAIT_TIME default value is defined in clause K.1.1 of ETSI TS 138 521-2 [2].
- NOTE 4: If the (in-band) beam peak is within $0^{\circ} \le \theta \le 90^{\circ}$: perform first hemispherical TRP scan $(0^{\circ} \le \theta \le 90^{\circ})$ in DUT Orientation 1 and second hemispherical TRP scan $(90^{\circ} > \theta \ge 0^{\circ})$ in DUT Orientation 2. If the (in-band) beam peak is within $90^{\circ} < \theta \le 180^{\circ}$: perform first hemispherical TRP scan $(0^{\circ} \le \theta \le 90^{\circ})$ in DUT Orientation 2 and second hemispherical TRP scan $(90^{\circ} > \theta \ge 0^{\circ})$ in DUT Orientation 1. The DUT with UBF activated needs to be re-positioned during the test.

Message contents are according to ETSI TS 138 508-1 [4], clause 4.6.

5.2.3.9.1.2 Test requirements

The results obtained shall be compared to the limits in Table 4.2.2.10.1.2-1, clause 4.2.2.10.1.2 in order to show compliance.

5.3 Testing for compliance with technical requirements for Frequency Range 1 and Frequency Range 2 interworking operation with other radios

5.3.1 Environmental conditions for testing

Tests defined in the present document shall be carried out at representative points within the boundary limits of the operational environmental profile defined by its intended use.

Where technical performance varies subject to environmental conditions, tests shall be carried out under a sufficient variety of environmental conditions (within the boundary limits of the operational environmental profile defined by its intended use) to give confidence of compliance for the affected technical requirements.

All tests shall be conducted using normal test conditions except where otherwise stated. For guidance on the use of other conditions to be used in order to show compliance reference can be made to ETSI TS 138 521-3 [3], clause F.1.1.

5.3.2 Interpretation of the measurement results

The interpretation of the results recorded in a test report for the measurements described in the present document shall be as follows:

- the measured value related to the corresponding limit will be used to decide whether an equipment meets the requirements of the present document;
- the value of the measurement uncertainty for the measurement of each parameter shall be included in the test report.

For the test methods, according to the present document, the measurement uncertainty figures shall be calculated and shall correspond to an expansion factor (coverage factor) k = 1,96 (which provide a confidence level of respectively 95 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)). Principles for the calculation of measurement uncertainty are contained in ETSI TR 100 028 [i.5], in particular in annex C of the ETSI TR 100 028-2 [i.5]. For guidance on other measurement conditions reference can be made to annex A to of ETSI TS 138 521-1 [1].

5.3.3 Essential radio test suites

5.3.3.0 Introduction

5.3.3.0.0 General

For Tx test cases the identified beam peak direction can be stored and reused for a device under test in various configurations/environments for the full duration of device testing as long as beam peak direction is the same.

Unless otherwise stated the transmitter, characteristics are specified at the antenna connector(s) of the UE for the bands operating on frequency range 1 and over the air of the UE for the bands operating on frequency range 2. The requirements for frequency range 1 and frequency range 2 can be verified separately. For the carrier in frequency range 1, requirements can be verified with the NR FR2 link disabled. For the carrier in frequency range 2, requirements can be verified in OTA mode with LTE connecting to the network by OTA without calibration.

Unless otherwise stated, requirements for NR transmitter written in ETSI TS 138 101-1 [6] and ETSI TS 138 101-2 [7] apply and are assumed anchor agnostic. Unless otherwise stated, if UE indicates IE maxNumberSRS-Ports-PerResource = n2 in NR standalone operation mode, the said UE shall meet the NR requirements for either power class 2 or power class 3 in EN-DC within FR1 if UE indicates IE maxNumberSRS-Ports-PerResource = n1 for EN-DC on this NR band. Requirements are verified under conditions where anchor resources do not interfere with NR operation.

Unless otherwise stated, Channel Bandwidth shall be prioritized in the selecting of test points. Subcarrier spacing shall be selected after Test Channel Bandwidth is selected.

For conformance testing involving FR2 test cases in the present document, the UE under test shall be pre-configured with UL Tx diversity schemes disabled to account for single polarization System Simulator (SS) in the test environment. The UE under test may transmit with dual polarization.

Uplink RB allocations for E-UTRA carrier given in Table 5.3.3.0.0-1 are used throughout this clause unless otherwise stated by the test case.

RB allocation **Channel Bandwidth** Full_Allocation Partial Allocation 1RB Left 1RB Right 1.4 MHz 6@0 5@0 1@0 1@5 3 MHz 15@0 4@0 1@0 1@14 5 MHz 25@0 8@0 1@0 1@24 10 MHz 50@0 12@0 1@0 1@49 15 MHz 75@0 16@0 1@0 1@74 20 MHz 1@0 1@99 100@0 18@0

Table 5.3.3.0.0-1: Common uplink configuration for E-UTRA carrier

NOTE: Partial_Allocation corresponds to the test points with 0 dB MPR_{single,E-UTRA} for QPSK modulation type included in ETSI TS 136 521-1 [11], Table 6.2.2.4.1-1.

5.3.3.0.1 Applicability and test coverage rules

- 1) The applicability and test coverage rules for Non-Standalone (NSA) only capable devices shall include the following:
 - a) For each NR band in a device, test all the EN-DC exception test requirements as per test procedures in ETSI TS 138 521-3 [3].
 - b) Test all the EN-DC FR2 non-exception test requirements in ETSI TS 138 521-3 [3] with test procedures which refer appropriately back to ETSI TS 138 521-2 [2] for each NR band. Test only one EN-DC combination per FR2 band for each EN-DC configuration as defined in clause 5.5B of ETSI TS 138 101-3 [8] using LTE anchor agnostic approach.
 - c) Test all the EN-DC FR1 non-exception test requirements in ETSI TS 138 521-3 [3] with test procedures which refer appropriately back to ETSI TS 138 521-1 [1] for each NR band. Test only one EN-DC combination per FR1 band for each EN-DC configuration as defined in clause 5.5B of ETSI TS 138 101-3 [8] using LTE anchor agnostic approach.
- 2) The applicability and test coverage rules for Standalone (SA) and NSA capable devices shall include the following:
 - a) For each NR band in a device, test all the EN-DC exception test requirements as per test procedures in ETSI TS 138 521-3 [3].
 - b) Test all the Standalone FR2 test requirements as per test procedures in ETSI TS 138 521-2 [2] for each NR band. This also fulfils coverage for all non-exception EN-DC FR2 test requirements for that NR band and need not be retested. If Standalone FR2 cannot be tested (due to test case not being complete), then test in EN-DC mode following 1) b) above.
 - c) Test all the Standalone FR1 test requirements as per test procedures in ETSI TS 138 521-1 [1] for each NR band. This also fulfils coverage for all non-exception EN-DC FR1 test requirements for that NR band and need not be retested. If Standalone FR1 cannot be tested (due to test case not being complete), then test in EN-DC mode following 1) c) above.

5.3.3.0.2 E-UTRA configuration for EN-DC FR1 tests applying the E-UTRA anchor-agnostic approach

This clause applies to EN-DC test cases where E-UTRA anchor needs to be configured as per the anchor-agnostic approach outlined in clauses 6.1 and 7.1 of ETSI TS 138 101-3 [8]. The LTE anchor-agnostic approach is defined as measurements on the NR carrier under conditions where the LTE anchor resources do not interfere with NR operation. The configuration defined in this clause ensures the establishment of such conditions.

For baseline configuration, the E-UTRA carrier will be configured for each test case in clauses 5.3.3 as defined in the equivalent standalone E-UTRA test in ETSI TS 136 521-1 [11]. However, the below exceptions defined in tables 5.3.3.0.2-1, 5.3.3.0.2-2, 5.3.3.0.2-3, 5.3.3.0.2-4 and 5.3.3.0.2-5 are applied to ensure that the E-UTRA anchor resources do not interfere with NR operation.

For EN-DC within FR1 band combinations with multiple E-UTRA component carriers, it is sufficient to configure any one E-UTRA carrier from the carrier group whenever it is determined that anchor agnostic approach can be applied.

Table 5.3.3.0.2-1: E-UTRA configuration for EN-DC FR1 tests applying anchor agnostic approach

Parameter	Value	Comments
Test Frequency during	Mid	As defined in ETSI TS 136 508 [13] for the LTE band under test.
and after connection	(see Table 5.3.3.0.2-2)	
setup		
Bandwidth during and	5 MHz	Supported by all LTE bands.
after connection setup	(see Table 5.3.3.0.2-2)	
DL signal levels during	RS EPRE -85,0 dBm/15	DL physical channels as defined in clauses C.0, C.1, C.2 and C.3 of
connection setup	kHz	ETSI TS 136 521-1 [11]
		ETSI TS 136 521-1 [11], clause C.0 defines the default DL power
		level of RS EPRE to be -85 dBm/15 kHz.
UL Signal levels during	PUSCH Power	Attained by enabling open loop power control and setting up UL
connection setup		signal levels according to clauses H.0, H.2 and H.3 of ETSI
		TS 136 521-1 [11].
DL/UL RMC after	0 RB allocation on both	Once the LTE link is established, then LTE Tx can be restricted by
connection setup	DL and UL	configuring 0 RB allocation on DL and UL.
	(see Table 5.3.3.0.2-2)	TimeAlignmentTimerDedicated IE to be set to infinity to ensure UE
		does not look for TA adjustments (see Table 5.3.3.0.2-5).
CQI Reports and SRS	Disabled	Disable periodic and aperiodic CQI reports to ensure none of these
after connection setup	(see tables 5.3.3.0.2-3	transmissions occurs on the LTE uplink.
	and 5.3.3.0.2-4)	Since LTE transmissions could easily exceed spurious emissions
		limits, tests that are intended to measure RF parametrics on the NR
		should simply avoid LTE transmit altogether.

Table 5.3.3.0.2-2: E-UTRA Test Configuration Table

E-UTRA Test Parameters					
E-UTRA Channel	E-UTRA Test	Downlink		Uplink	
Bandwidth	Frequency	Modulation	RB allocation	Modulation	RB
					allocation
5 MHz (note 2)	Mid Range (note 1)	N/A	0	N/A	0
NOTE 1: E-UTRA T	NOTE 1: E-UTRA Test Frequency as specified in ETSI TS 136 508 [13], clause 4.3.1.				
NOTE 2: For EN-DC Intra-band tests that need to apply E-UTRA anchor agnostic approach, refer to and					
pick applicable E-UTRA channel bandwidth from clause 5.3B.1 of ETSI TS 138 521-3 [3] and					
indicate w	ithin test case if it is diff	erent than 5 MHz			

Table 5.3.3.0.2-3: CQI-ReportConfig-DEFAULT: Additional E-UTRA Anchor Configuration

Derivation Path: ETSI TS 136 508 [13], clause 4.6.3, Table 4.6.3-2 CQI-ReportConfig-DEFAULT					
Information Element	Value/remark	Comment	Condition		
CQI-ReportConfig-DEFAULT ::= SEQUENCE {					
cqi-ReportModeAperiodic	NOT PRESENT				
cqi-ReportPeriodic	NOT PRESENT				
}					

Table 5.3.3.0.2-4: PhysicalConfigDedicated-DEFAULT: Additional E-UTRA Anchor Configuration

Derivation Path: ETSI TS 136 508 [13], clause 4.8.2, Table 4.8.2.1.6-1 PhysicalConfigDedicated-DEFAULT					
Information Element Value/remark Comment Conditio					
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {					
soundingRS-UL-ConfigDedicated	Not present		RBC		
}					

Table 5.3.3.0.2-5: MAC-MainConfig-RBC: Additional E-UTRA Anchor Configuration

D	Derivation Path: ETSI TS 136 508 [13], clause 4.8.2.1.5, Table 4.8.2.1.5-1 MAC-MainConfig-RBC					
	Information Element Value/remark Comment Condition					
ī	timeAlignmentTimerDedicated	Infinity				

5.3.3.0.3 E-UTRA configuration for EN-DC FR2 tests applying the E-UTRA anchoragnostic approach

This clause applies to EN-DC test cases where E-UTRA anchor needs to be configured as per the anchor-agnostic approach outlined in clauses 6.1 and 7.1 of ETSI TS 138 101-3 [8]. The LTE anchor-agnostic approach is defined as measurements on the NR carrier under conditions where the LTE anchor resources do not interfere with NR operation. The configuration defined in this clause ensures the establishment of such conditions.

For baseline configuration, the E-UTRA carrier will be configured for each test case in clauses 5.3.3 as defined in the equivalent standalone E-UTRA test in ETSI TS 136 521-1 [11]. However, the below exceptions defined in tables 5.3.3.0.3-1 to 5.3.3.0.3-7 are applied to ensure that the E-UTRA anchor resources do not interfere with NR operation.

Since the E-UTRA link is always a functional link when testing EN-DC including FR2 band combinations, it is sufficient to configure any one E-UTRA carrier from the carrier group, irrespective of the number of E-UTRA carriers in the EN-DC combination under test.

Table 5.3.3.0.3-1: E-UTRA configuration for EN-DC FR2 tests applying anchor agnostic approach

Parameter	Value	Comments
Test Frequency during	Mid	As defined in ETSI TS 136 508 [13] for the LTE band under test.
and after connection	(see Table 5.3.3.0.3-2)	
setup		
Bandwidth during and	5 MHz	Supported by all LTE bands.
after connection setup	(see Table 5.3.3.0.3-2)	
DL signal levels	See Table 5.3.3.0.3-3	DL physical channels as defined in clauses C.0, C.1, C.2 and
		clause C.3 of ETSI TS 136 521-1 [11].
UL Signal levels for	PUSCH Power	Attained by enabling open loop power control and setting up UL
connection setup and		signal levels according to clauses H.0, H.2 and H.3 of ETSI
UBF transmission		TS 136 521-1 [11] with the exception for power control message
		exception defined in Table 5.3.3.0.3-5.
DL/UL RMC after	0 RB allocation on both	Once the LTE link is established, then LTE Tx can be restricted by
connection setup	DL and UL	configuring 0 RB allocation on DL and UL.
except for UBF	(see Table 5.3.3.0.3-2)	TimeAlignmentTimerDedicated IE to be set to infinity to ensure UE
transmission		does not look for TA adjustments (see Table 5.3.3.0.3-7).
CQI Reports and SRS	Disabled	Disable periodic and aperiodic CQI reports to ensure none of these
after connection setup	(see tables 5.3.3.0.3-4	transmissions occurs on the LTE uplink.
	and 5.3.3.0.3-6)	Since LTE transmissions could easily exceed spurious emissions
		limits, tests that are intended to measure RF parametrics on the NR
		should simply avoid LTE transmit altogether.

Table 5.3.3.0.3-2: E-UTRA Test Configuration Table

E-UTRA Test Parameters						
E-UTRA Channel	E-UTRA Channel E-UTRA Test Downlink Uplink					
Bandwidth	Frequency	Modulation	RB allocation	Modulation	RB	
					allocation	
5 MHz (note 2)	Mid Range (note 1)	N/A	0	N/A	0	
NOTE 4 E LITTO A T. 4 E						

NOTE 1: E-UTRA Test Frequency as specified in ETSI TS 136 508 [13], clause 4.3.1.

NOTE 2: For EN-DC Intra-band tests that need to apply E-UTRA anchor agnostic approach, refer to and pick applicable E-UTRA channel bandwidth from clause 5.3B.1 of ETSI TS 138 521-3 [3] and indicate within test case if it is different than 5 MHz.

Table 5.3.3.0.3-3: Default Downlink power levels for E-UTRA anchor

	Unit	Band Group	Channel Bandwidth					
			1,4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
RS EPRE	dBm/15 kHz	FDD_A, TDD_A	N/A	N/A	≥ -120,0	N/A	N/A	N/A
		FDD_B1, TDD_B1	N/A	N/A	≥ -119,5	N/A	N/A	N/A
		FDD_C, TDD_C	N/A	N/A	≥ -119,0	N/A	N/A	N/A
		FDD_D, TDD_D	N/A	N/A	≥ -118,5	N/A	N/A	N/A
		FDD_E, TDD_E	N/A	N/A	≥ -118,0	N/A	N/A	N/A
		FDD_G, TDD_G	N/A	N/A	≥ -117,0	N/A	N/A	N/A
		FDD_H, TDD_H	N/A	N/A	≥ -116,5	N/A	N/A	N/A
1		FDD_N, TDD_N	N/A	N/A	≥ -113,5	N/A	N/A	N/A

NOTE 1: The power level is specified at the RSRP reference point as defined in ETSI TS 136 214 [15].

NOTE 2: E-UTRA Band groups are defined in ETSI TS 136 133 [16], clause 3.5.1.

Table 5.3.3.0.3-4: CQI-ReportConfig-DEFAULT: Additional E-UTRA Anchor Configuration

Derivation Path: ETSI TS 136 508 [13], clause 4.6.3, Tal	ole 4.6.3-2 CQI-ReportConfig	-DEFAULT	
Information Element	Value/remark	Comment	Condition
CQI-ReportConfig-DEFAULT ::= SEQUENCE {			
cqi-ReportModeAperiodic	NOT PRESENT		
cqi-ReportPeriodic	NOT PRESENT		
}			

Table 5.3.3.0.3-5: UplinkPowerControlCommon-DEFAULT: Additional E-UTRA Anchor Configuration

Derivation Path: ETSI TS 136 508 [13], clause 4.6.	3, UplinkPowerControlCommo	n-DEFAULT	
Information Element	Value/remark	Comment	Condition
UplinkPowerControlCommon-DEFAULT ::=			
SEQUENCE {			
p0-NominalPUSCH	-60 (-60 dBm)	To attain maximum	
		power from the	
		DUT	
<u> </u>			

Table 5.3.3.0.3-6: PhysicalConfigDedicated-DEFAULT: Additional E-UTRA Anchor Configuration

Derivation Path: ETSI TS 136 508 [13], clause 4.8.2, Tal	ole 4.8.2.1.6-1 PhysicalConfig	Dedicated-DEFAUL	Τ
Information Element	Value/remark	Comment	Condition
PhysicalConfigDedicated-DEFAULT ::= SEQUENCE {			
soundingRS-UL-ConfigDedicated	Not present		RBC
}			

Table 5.3.3.0.3-7: MAC-MainConfig-RBC: Additional E-UTRA Anchor Configuration

Derivation Path: ETSI TS 136 508 [13], clause 4.8.2.1.5,	Table 4.8.2.1.5-1 MAC-Main	Config-RBC	
Information Element	Value/remark	Comment	Condition
timeAlignmentTimerDedicated	Infinity		

5.3.3.1	Transmitter Maximum Output Power
5.3.3.1.1	Void
5.3.3.1.2	Transmitter Maximum Output Power for EN-DC
5.3.3.1.2.1	Void

5.3.3.1.2.2	Void
5.3.3.1.2.3	Transmitter Maximum Output Power for Inter-Band EN-DC within FR1
5.3.3.1.2.3.1	Method of test
5.3.3.1.2.3.1.1	Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, DC configuration specified in ETSI TS 138 521-3 [3], clause 5.5B.4 and test channel bandwidths specified in ETSI TS 136 508 [13], clause 4.3.1 and ETSI TS 138 508-1 [4], clause 4.3.1, and sub-carrier spacing based on NR operating bands specified in ETSI TS 138 521-1 [1], clause 5.3. All of these configurations shall be tested with applicable test parameters for each EN-DC configuration, and are shown in Table 5.3.3.1.2.3.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in ETSI TS 136 521-1 [11], annex A, clause A.2.3 for E-UTRA RMC for TDD, ETSI TS 136 521-1 [11], annex A, clause A.2.2 for E-UTRA RMC for FDD, and ETSI TS 138 521-1 [1], annex A, clause A.2 for NR RMC. Configurations of PDSCH and PDCCH before measurement are specified in ETSI TS 136 521-1 [11], annex C, clause C.2 and in ETSI TS 138 521-1 [1], annex C, clause C.2 for E-UTRA CG and NR CG respectively.

Table 5.3.3.1.2.3.1.1-1: Test configuration table

Default Conditions				
Test Environment as specified in ETSI TS 138 508-1 [4], clause 4.1	NC, TL/VL, TL/VH, TH/VL, TH/VH			
Test Frequencies as specified in ETSI TS 138 508-1 [4], clause 4.3.1 and ETSI TS 136 508 [13]	Low for E-UTRA CC1 and NR CC1, Mid for E-UTRA CC1 and NR CC1, High for E-UTRA CC1 and NR CC1 (note 4)			
Test EN-DC channel bandwidth as specified in ETSI TS 136 508 [13], clause 4.3.1 and ETSI TS 138 508-1 [4] clause 4.3.1	5 MHz for E-UTRA CC1 and Lowest for NR CC1, Highest for E-UTRA CC1 and Highest for NR CC1			
Test SCS for the NR cell as specified in Table 1.1-6	Lowest, Highest			

					rameters			
Test ID	Test	E-UTRA	NR BW	Downlink		EN-DC Uplink		
	Freq	BW		Configuration	E-UTR			Cell
					Modulation	RB allocation (note 1)	Modulation (note 3)	RB allocation (note 2)
1	High	Default	Default	N/A	QPSK	1RB_Right	DFT-s- OFDM PI/2 BPSK	Inner_1RB _Right
2	Low	Default	Default		QPSK	1RB_Left	DFT-s- OFDM PI/2 BPSK	Inner_1RB _Left
3	Default	Default	Default		QPSK	Partial_Allo cation	DFT-s- OFDM PI/2 BPSK	Inner_Full
4	High	Default	Default		QPSK	1RB_Right	DFT-s- OFDM QPSK	Inner_1RB _Right
5	Low	Default	Default		QPSK	1RB_Left	DFT-s- OFDM QPSK	Inner_1RB _Left
6	Default	Default	Default		QPSK	Partial_Allo cation	DFT-s- OFDM QPSK	Inner_Full
7	High	Default	Lowest	1	QPSK	1RB_Right	N/A	N/A
8	Low	Default	Lowest	1	QPSK	1RB_Left	N/A	N/A
9	Default	Default	Lowest		QPSK	Partial_Allo cation	N/A	N/A
10	High	5 MHz	Default		N/A	N/A	DFT-s- OFDM PI/2 BPSK	Inner_1RB _Right
11	Low	5 MHz	Default		N/A	N/A	DFT-s- OFDM PI/2 BPSK	Inner_1RB _Left
12	Default	5 MHz	Default		N/A	N/A	DFT-s- OFDM PI/2 BPSK	Inner_Full
13	High	5 MHz	Default		N/A	N/A	DFT-s- OFDM QPSK	Inner_1RB _Right
14	Low	5 MHz	Default		N/A	N/A	DFT-s- OFDM QPSK	Inner_1RB _Left
15	Default	5 MHz	Default		N/A	N/A	DFT-s- OFDM QPSK	Inner_Full

NOTE 1: The specific configuration of each RB allocation is defined in Table 5.3.3.0.0-1.

NOTE 2: The specific configuration of each RB allocation is defined in Table 6.1-1 in ETSI TS 138 521-1 [1].

NOTE 3: DFT-s-OFDM Pi/2 BPSK test applies only for UEs which supports Pi/2 BPSK in NR FR1.

NOTE 4: For NR band n28, the Highest test channel bandwidth is replaced by 20 MHz due to MPR is always larger than 0 dB for 30 MHz bandwidth.

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], clause A.3.1.1 for SS and clause A.3.2.1 for UE.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to ETSI TS 136 521-1 [11], clause C.0 and ETSI TS 138 521-1 [1], clause C.0 for E-UTRA CG and NR CG respectively, and uplink signals according to ETSI TS 136 521-1 [11], annex H and ETSI TS 138 521-1 [1] annex G for E-UTRA CG and NR CG respectively.
- 4) The UL Reference Measurement channels are ETSITS 136 521-1 [11], clause A.2 and ETSITS 138 521-1 [1], clause A.2 for E-UTRA CG and NR CG respectively.
- 5) Propagation conditions are set according to ETSI TS 136 521-1 [11] and ETSI TS 138 521-1 [1], clause B.0 for E-UTRA CG and NR CG respectively.

- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in ETSI TS 138 521-3 [3], clause 6.2B.1.3.4.3.
- 7) For the case of testing overlapping E-UTRA and NR UL transmission scenario when both bands are TDD, ensure E-UTRA UL transmission overlaps with NR UL transmission in time by giving SCG a delay of 3 E-UTRA subframes, or by giving MCG a delay of 2 subframes.

5.3.3.1.2.3.1.2 Procedure

- SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.3.3.1.2.3.1.1-1 on E-UTRA CC and NR CC respectively. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2) Send continuously uplink power control "up" commands to the UE for NR and E-UTRA carrier according to Table 5.3.3.1.2.3.1.1-1 until the UE transmits at its P_{UMAX} level; allow at least 200 ms from the first TPC command for the UE to reach P_{UMAX} level.
- 3) For test ID 1~6 measure the sum of mean transmitted power over all EN-DC component carriers in the EN-DC, which shall meet the requirements described in Table 4.3.2.2.3.2-1 and the period of the measurement shall be at least the continuous duration of one active sub-frame.

For test ID 7~15 measure the mean transmitted power over E-UTRA carrier or NR carrier, which shall meet the requirements described in Table 4.2.2.1.2-1 in ETSI EN 301 908-13 [12] or Table 4.1.2.2.1.2-1 respectively. The period of the measurement shall be at least the continuous duration of one active sub-frame.

5.3.3.1.2.3.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.2.2.3.2 in order to show compliance.

5.3.3.1.2.4	Void
5.3.3.1.2.4	Transmitter Maximum Output Power for Inter-Band EN-DC including FR2
5.3.3.1.2.4.1	Method of test
5.3.3.1.2.4.1.1	Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 1.2-6. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, as shown in Table 5.3.3.1.2.4.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 in ETSI TS 138 521-2 [2]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 in ETSI TS 138 521-2 [2].

Table 5.3.3.1.2.4.1.1-1: Test Configuration Table

	Default Conditions							
	Test Environment as specified in ETSI TS 138 508-1 [4], Normal, TL, TH clause 4.1							
Test Fre	•	as specifie	d in ETSI TS 138 5	Low range,	Mid Range, High range			
Test Channel Bandwidths as specified in ETSI Lowest, 100 MHz, Highest TS 138 508-1 [4], clause 4.3.1						MHz, Highest		
Test SC	S as speci	fied in Tab	le 1.2-6		120 kHz			
			Test Pa	arameters				
Test ID	ChBw	SCS	Downlink Configuration		Uplink Co	onfiguration		
		Default	N/A	Modu	ılation	RB allocation (note 1)		
1	50			DFT-s-OF	DM QPSK	Inner_Full for PC2, PC3		
2	100					and PC4		
3	200					Inner_Full_Region1 for		
4	400					PC1		
	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 in ETSI TS 138 521-2 [2] for PC3. NOTE 2: Void.							

- 1) Connection between SS and UE is shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 2.1) The parameter settings for E-UTRA cell are set up according to ETSI TS 136 508 [13], clause 4.4.3.
- 3) Downlink signals are initially set up according to clause C.2 in ETSI TS 138 521-2 [2] and ETSI TS 138 508-1 [4], clause 5.2.1.1.1, and uplink signals according to clauses G.0, G.1 and G.3.0 in ETSI TS 138 521-2 [2].
- 3.1) The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 in ETSI TS 138 521-3 [3] and propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].
- 4) The UL Reference Measurement channels are set according to Table 5.3.3.1.2.4.1.1-1.
- 5) Propagation conditions are set according to clause B.0 in ETSI TS 138 521-2 [2].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to ETSI TS 138 508-1 [4], clause 4.5.

5.3.3.1.2.4.1.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 5.3.3.1.2.4.1.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Messages to configure the appropriate uplink modulation in clause 6.2.1.1.4.3 in ETSI TS 138 521-2 [2].
- 1.1) On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7 in ETSI TS 138 521-3 [3].
- 2) Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in clause K.1.1 in ETSI TS 138 521-2 [2]. Allow at least BEAM_SELECT_WAIT_TIME (note) for the UE Tx beam selection to complete.
- 3) Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms starting from the first TPC command in this step to ensure that the UE transmits at its maximum output power. Allow at least BEAM_SELECT_WAIT_TIME (see note) for the UE Tx beam selection to complete.

- 4) SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4], clause 4.9.2 using condition Tx only.
- 5) Measure UE EIRP in the Tx beam peak direction in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in tables 6.2.1.1.5-1 to 6.2.1.1.5-4 in ETSI TS 138 521-2 [2]. EIRP test procedure is defined in clause K.1.3 in ETSI TS 138 521-2 [2]. The measuring duration is one active uplink subframe. EIRP is calculated considering both polarizations, theta and phi.
- 6) Measure TRP of the transmitted signal for the assigned NR channel with a rectangular measurement filter with bandwidths according to Table 6.5.2.3.5-1 in ETSI TS 138 521-2 [2]. Total radiated power is measured according to TRP measurement procedure defined in clause K.1.7 in ETSI TS 138 521-2 [2] and measurement grid specified in clause M.4 in ETSI TS 138 521-2 [2]. TRP is calculated considering both polarizations, theta and phi.
- 7) SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4], clause 4.9.3.

NOTE: The BEAM_SELECT_WAIT_TIME default value is defined in clause K.1.1 in ETSI TS 138 521-2 [2].

5.3.3.1.2.4.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.2.2.4.2 in order to show compliance.

5.3.3.1.2.5 Transmitter Maximum Output Power for Inter-Band EN-DC including both FR1 and FR2

5.3.3.1.2.5.1 Method of test

The conducted and radiated requirements are tested separately as in clause 5.3.3.1.2.3.1 and clause 5.3.3.1.2.4.1 respectively. The EN-DC requirements for maximum output power apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 5.3.3.1.2.

5.3.3.1.2.5.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.2.5.2 in order to show compliance.

5.3.3.2 Transmitter Minimum Output Power

_	2	2	2	4	Va	.:.	ı
'n			2	1	VC	าเด	1

5.3.3.2.2 Transmitter Minimum Output Power for EN-DC

_	22	.2.2.1	Voic	ı
J.	.ა.ა		VOIC	J

5.3.3.2.2.2 Void

5.3.3.2.2.3 Transmitter Minimum Output Power for Inter-Band EN-DC within FR1

5.3.3.2.2.3.1 Method of test

5.3.3.2.2.3.1.1 Initial conditions

Same test descriptions as in clause 5.1.3.2.1.1 for the NR carrier with the following exceptions.

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 5.3.3.0.2-1. For Initial conditions as in clause 5.1.3.2.1.1.1, the following steps will be added to configure E-UTRA component:

2.1) The parameter settings for the E-UTRA cell are set up according to ETSI TS 136 508 [13], clause 4.4.3.

3.1) The E-UTRA downlink signal level, uplink signal level are set according to Table 5.3.3.0.2-1 and propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].

Step 6 of Initial conditions as in clause 5.1.3.2.1.1.1 is replaced by the following two steps:

- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to ETSI TS 138 508-1 [4], clause 4.5.
- 7) On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 5.3.3.0.2-1 under clause 5.3.3.0.2.

5.3.3.2.2.3.1.2 Procedure

Same test procedure as in clause 5.1.3.2.1.1.2 for the NR carrier.

5.3.3.2.2.3.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.3.2.3.2 in order to show compliance.

5.3.3.2.2.4 Transmitter Minimum Output Power for Inter-Band EN-DC including FR2

5.3.3.2.2.4.1 Method of test

5.3.3.2.2.4.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.2-6. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in Table 5.3.3.2.2.4.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 in ETSI TS 138 521-2 [2]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 in ETSI TS 138 521-2 [2].

Table 5.3.3.2.2.4.1.1-1: Test Configuration Table

Initial Conditions							
Test Enviro	nment as specified in ETSI TS 138 508-1 [4],	Normal, TL, TH					
clause 4.1							
Test Freque	encies as specified in ETSI TS 138 508-1 [4],	Low range, Mid ra	nge, High range				
clause 4.3.1							
Test Chann	est						
TS 138 508	-1 [4], clause 4.3.1						
Test SCS a	s specified in Table 1.2-6	Highest	est				
	Test Para	meters					
	Downlink Configuration	U	plink Configuration				
Test ID	N/A for minimum output power test case	Modulation	RB allocation (note)				
1		DFT-s-OFDM	Outer_Full				
		QPSK					
	4. 5						

- 1) Connection between SS and UE is shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 2.1) The parameter settings for E-UTRA cell are set up according to ETSI TS 136 508 [13], clause 4.4.3.
- Downlink signals are initially set up according to clauses C.0, C.1 and C.3.0, and uplink signals according to clauses G.0, G.1 and G.3.0 in ETSI TS 138 521-2 [2].

- 3.1) The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 in ETSI TS 138 521-3 [3] and propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].
- 4) The UL Reference Measurement Channel is set according to Table 5.3.3.2.2.4.1.1-1.
- 5) Propagation conditions are set according to clause B.0 in ETSI TS 138 521-2 [2].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to ETSI TS 138 508-1 [4], clause 4.5.

5.3.3.2.2.4.1.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3.1.4.1-1 in ETSI TS 138 521-2 [2]. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 1.1) On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7 in ETSI TS 138 521-3 [3].
- 2) Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in clause K.1.1 in ETSI TS 138 521-2 [2]. Allow at least BEAM_SELECT_WAIT_TIME (note) for the UE Tx beam selection to complete.
- 3) Send continuously uplink power control "down" commands in every uplink scheduling information to the UE; allow at least 200 ms starting from the first TPC command in this step to ensure that the UE transmits at its minimum output power. Allow at least BEAM_SELECT_WAIT_TIME (see note 1) for the UE Tx beam selection to complete.
- 4) SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4], clause 4.9.2 using condition Tx only.
- 5) Measure UE EIRP in the Tx beam peak direction in the measurement bandwidth specified in Table 6.3.1.5-1 and Table 6.3.1.5-2 in ETSI TS 138 521-2 [2] for the specific channel bandwidth under test. EIRP test procedure is defined in clause K.1.3 in ETSI TS 138 521-2 [2]. The measuring duration is [one active uplink subframe]. EIRP is calculated considering both polarizations, theta and phi. For TDD, only slots consisting of only UL symbols are under test.
- 6) SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4], clause 4.9.3.

NOTE: The BEAM_SELECT_WAIT_TIME default value is defined in clause K.1.1 in ETSI TS 138 521-2 [2].

5.3.3.2.2.4.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.3.2.4.2 in order to show compliance.

5.3.3.2.2.5 Transmitter Minimum Output Power for Inter-Band EN-DC including both FR1 and FR2

5.3.3.2.2.5.1 Method of test

The conducted and radiated requirements are tested separately as in clause 5.3.3.2.2.3 and clause 5.3.3.2.2.4 respectively. The requirement is sufficiently verified in clauses 5.3.3.2.2.3 and 5.3.3.2.2.4 and no additional test is required.

5.3.3.2.2.5.2 Test requirements

Clauses 5.3.3.2.2.3.2 and 5.3.3.2.2.4.2 apply.

5.3.3.3	Transmitter Spectrum Emission Mask
5.3.3.3.1	Void
5.3.3.3.2	Transmitter Spectrum Emission Mask for EN-DC
5.3.3.3.2.1	Void
5.3.3.3.2.2	Void
5.3.3.3.2.3	Transmitter Spectrum Emission for Inter-Band EN-DC within FR1
5.3.3.3.2.3.1	Method of test
5.3.3.3.2.3.1.1	General spectrum emission mask
5.3.3.3.2.3.1.1.	1 Initial conditions

Same test descriptions as in clause 5.1.3.3.1.1.1 for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 5.3.3.0.2-1. For Initial conditions as in clause 5.1.3.3.1.1.1.1, the following steps will be added to configure E-UTRA component:

- 2.1) The parameter settings for E-UTRA cell are set up according to ETSI TS 136 508 [13], clause 4.4.3.
- 3.1) The E-UTRA downlink signal level, uplink signal level are set according to Table 5.3.3.0.2-1 and propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].

Step 6 of Initial conditions as in clause 5.1.3.3.1.1.1 is replaced by the following two steps:

- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG according to ETSI TS 138 508-1 [4], clause 4.5.
- 7) On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 5.3.3.0.2-1 under clause 5.3.3.0.2.

5.3.3.3.2.3.1.1.2 Procedure

Same test procedure described in clause 5.1.3.3.1.1.1.2 shall apply for the NR carrier.

5.3.3.2.3.1.2 Additional Spectrum emissions mask

5.3.3.3.2.3.1.2.1 Initial conditions

Same test description as in clause 5.1.3.3.1.1.2 for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 5.3.3.0.2-1. For Initial conditions as in clause 5.1.3.3.1.1.2.1, the following steps will be added to configure E-UTRA component:

- 2.1) The parameter settings for E-UTRA cell are set up according to ETSI TS 136 508 [13], clause 4.4.3.
- 3.1) The E-UTRA downlink signal level, uplink signal level are set according to Table 5.3.3.0.2-1 and propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].

Step 6 of Initial conditions as in clause 5.1.3.3.1.1.2.1 is replaced by the following two steps:

6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG according to ETSI TS 138 508-1 [4], clause 4.5.

7) On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 5.3.3.0.2-1 under clause 5.3.3.0.2.

5.3.3.3.2.3.1.2.2 Procedure

Same procedure described in clause 5.1.3.3.1.1.2.2 shall apply for the NR carrier.

5.3.3.2.3.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.4.2.3.2 in order to show compliance.

5.3.3.3.2.4 Transmitter Spectrum Emission for Inter-Band EN-DC including FR2

5.3.3.2.4.1 Method of test

5.3.3.2.4.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 1.2-6. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in Table 5.3.3.3.2.4.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 in ETSI TS 138 521-2 [2]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 in ETSI TS 138 521-2 [2].

Table 5.3.3.3.2.4.1.1-1: Test Configuration Table

Initial Conditions						
Test Environ	ment as specified in ETSI TS 138 508-1 [4],	Normal				
clause 4.1						
Test Frequen	ncies as specified in ETSI TS 138 508-1 [4],	Mid range				
clause 4.3.1						
Test Channe	I Bandwidths as specified in ETSI	Lowest, Highest				
TS 138 508-1	1 [4], clause 4.3.1					
Test SCS as	specified in Table 1.2-6	Highest				
	Test Par	rameters				
Took ID	5 " 1 6 " 1	Uplink Configuration				
Test ID	Downlink Configuration	Uplink Con	figuration			
rest ID	N/A for Spectrum Emission Mask test case	Uplink Con Modulation	RB allocation (note)			
1 1			*			
1 2		Modulation	RB allocation (note)			
1		Modulation DFT-s-OFDM PI/2 BPSK	RB allocation (note) Outer_Full			
1 2		Modulation DFT-s-OFDM PI/2 BPSK DFT-s-OFDM QPSK	RB allocation (note) Outer_Full Outer_Full			
1 2 3		Modulation DFT-s-OFDM PI/2 BPSK DFT-s-OFDM QPSK DFT-s-OFDM 16 QAM	RB allocation (note) Outer_Full Outer_Full Outer_Full			

- 1) Connection between SS and UE is shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.2.1 for TE diagram and clause A.3.4.1.1 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 2.1) The parameter settings for E-UTRA cell are set up according to ETSI TS 136 508 [13], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1 and C.3.1 in ETSI TS 138 521-2 [2], and uplink signals according to clauses G.0, G.1 and G.3.1 in ETSI TS 138 521-2 [2].
- 3.1) The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 in ETSI TS 138 521-3 [3] and propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].
- 4) The UL Reference Measurement channels are set according to Table 5.3.3.3.2.4.1.1-1.
- 5) Propagation conditions are set according to clause B.0 in ETSI TS 138 521-2 [2].

6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to ETSI TS 138 508-1 [4], clause 4.5.

5.3.3.3.2.4.1.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.2.1.4.2-1 in ETSI TS 138 521-2 [2]. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 1.1) On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7 in ETSI TS 138 521-3 [3].
- 2) Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in clause K.1.1 in ETSI TS 138 521-2 [2]. Allow at least BEAM_SELECT_WAIT_TIME (note 2) for the UE Tx beam selection to complete.
- 3) Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms for the UE to reach maximum output power. Allow at least BEAM_SELECT_WAIT_TIME (note 2) for the UE Tx beam selection to complete.
- 4) SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4] clause 4.9.2 using condition Tx only.
- 5) Measure the TRP of the transmitted signal with a measurement filter of bandwidths according to Table 6.5.2.1.1.5-1 in ETSI TS 138 521-2 [2]. The centre frequency of the filter shall be stepped in continuous steps according to the same table. TRP shall be recorded for each step. The measurement period shall capture the active time slots. Total radiated power is measured according to TRP measurement procedure defined in annex K in ETSI TS 138 521-2 [2]. The measurement grid used for TRP measurement defined in annex M in ETSI TS 138 521-2 [2]. TRP is calculated considering both polarizations, theta and phi.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration Table 5.3.3.3.2.4.1.1-1, send an NR RRCReconfiguration message according to ETSI TS 138 508-1 [4], clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.
- NOTE 2: The BEAM_SELECT_WAIT_TIME default value is defined in clause K.1.1 in ETSI TS 138 521-2 [2].

5.3.3.2.4.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.4.2.4.2 in order to show compliance.

5.3.3.4	Transmitter Adjacent Channel Leakage Power Ratio
5.3.3.4.1	Void
5.3.3.4.2	Transmitter Adjacent Channel Leakage Power Ratio for EN-DC
5.3.3.4.2.1	Void
5.3.3.4.2.2	Void
5.3.3.4.2.3	Transmitter Adjacent Channel Leakage Power Ratio for Inter-Band EN-DC within FR1
5.3.3.4.2.3.1	Method of test
5.3.3.4.2.3.1.1	Initial conditions

Same test description as in clause 5.1.3.4.1.1.1 for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 5.3.3.0.2-1.

For Initial conditions as in clause 5.1.3.4.1.1.1, the following steps will be added to configure E-UTRA component:

- 2.1) The parameter settings for E-UTRA cell are set up according to ETSI TS 136 508 [13], clause 4.4.3.
- 3.1) The E-UTRA downlink signal level, uplink signal level are set according to Table 5.3.3.0.2-1 and propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].

Step 6 of Initial conditions as in clause 5.1.3.4.1.1.1 is replaced by the following two steps:

- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to ETSI TS 138 508-1 [4], clause 4.5.
- 7) On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 5.3.3.0.2-1 under clause 5.3.3.0.2.

5.3.3.4.2.3.1.2 Procedure

The test procedure described in clause 5.1.3.4.1.1.2 shall apply for NR carrier.

5.3.3.4.2.3.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.5.2.3.2 in order to show compliance.

5.3.3.4.2.4 Transmitter Adjacent Channel Leakage Power Ratio for Inter-Band EN-DC including FR2

5.3.3.4.2.4.1 Method of test

5.3.3.4.2.4.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 1.2-6. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in Table 5.3.3.4.2.4.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 in ETSI TS 138 521-2 [2]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 in ETSI TS 138 521-2 [2].

Table 5.3.3.4.2.4.1.1-1: Test Configuration Table

	Default Conditions							
Test Environment as specified in ETSI TS 138 508-1 [4],					Normal, TL, TH			
clause 4.1								
Test Frequencies as specified in ETSI TS 138 508-1 [4],					Low range, Mid range, High ra	ange		
clause 4.3.1								
Test Cl	hannel Ba	ndwidths	as specifie	ed in ETSI	Lowest, Highest			
	3 508-1 [4]							
Test So	CS as spe	cified in T	able 1.2-6	<u> </u>	Lowest, Highest			
				Test Parar	neters			
Test	Freq	ChBw	SCS	Downlink	Uplink Config	juration		
ID				Configuration				
		Default	Default	N/A for Adjacent	Modulation	RB allocation		
1		Doladit	Doladic		modulation			
		Boladit	Boladie	Channel Leakage	modalation	(note)		
1	Low	Bolault	Boladii		DFT-s-OFDM PI/2 BPSK			
1 2	Low High	Boladit	Boladit	Channel Leakage		(note)		
		Boldun	Doraum	Channel Leakage	DFT-s-OFDM PI/2 BPSK	(note) Outer_1RB_Left		
2	High	Bolduk	Doladii	Channel Leakage	DFT-s-OFDM PI/2 BPSK DFT-s-OFDM PI/2 BPSK	(note) Outer_1RB_Left Outer_1RB_Right		
3	High Mid	Bolduk	Dollar	Channel Leakage	DFT-s-OFDM PI/2 BPSK DFT-s-OFDM PI/2 BPSK DFT-s-OFDM PI/2 BPSK	(note) Outer_1RB_Left Outer_1RB_Right Outer_Full		
3 4	High Mid Low	Bolduk	Dollar	Channel Leakage	DFT-s-OFDM PI/2 BPSK DFT-s-OFDM PI/2 BPSK DFT-s-OFDM PI/2 BPSK DFT-s-OFDM QPSK	(note) Outer_1RB_Left Outer_1RB_Right Outer_Full Outer_1RB_Left		
2 3 4 5	High Mid Low High	Boldun	Soldan	Channel Leakage	DFT-s-OFDM PI/2 BPSK DFT-s-OFDM PI/2 BPSK DFT-s-OFDM PI/2 BPSK DFT-s-OFDM QPSK DFT-s-OFDM QPSK	(note) Outer_1RB_Left Outer_1RB_Right Outer_Full Outer_1RB_Left Outer_1RB_Right		
2 3 4 5 6	High Mid Low High Mid	Soldan	Soldan	Channel Leakage	DFT-s-OFDM PI/2 BPSK DFT-s-OFDM PI/2 BPSK DFT-s-OFDM PI/2 BPSK DFT-s-OFDM QPSK DFT-s-OFDM QPSK DFT-s-OFDM QPSK	(note) Outer_1RB_Left Outer_1RB_Right Outer_Full Outer_1RB_Left Outer_1RB_Right Outer_Full		

10	Low			DFT-s-OFDM 64 QAM	Outer_1RB_Left		
11	High			DFT-s-OFDM 64 QAM	Outer_1RB_Right		
12	Mid			DFT-s-OFDM 64 QAM	Outer_Full		
13	Low			CP-OFDM QPSK	Outer_1RB_Left		
14	High			CP-OFDM QPSK	Outer_1RB_Right		
15	Mid			CP-OFDM QPSK	Outer_Full		
NOTE:	NOTE: The specific configuration of each RF allocation is defined in Table 6.1-1 in ETSI TS 138 508-2 [5] for						
	DC3						

- 1) Connection between SS and UE is shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.2.1 for TE diagram and clause A.3.4.1.1 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 2.1) The parameter settings for E-UTRA cell are set up according to ETSI TS 136 508 [13], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1 and C.3.1 in ETSI TS 138 521-2 [2], and uplink signals according to clauses G.0, G.1 and G.3.1 in ETSI TS 138 521-2 [2].
- 3.1) The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 in ETSI TS 138 521-3 [3] and propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].
- 4) The UL Reference Measurement channels are set according to Table 5.3.3.4.2.4.1.1-1.
- 5) Propagation conditions are set according to clause B.0 in ETSI TS 138 521-2 [2].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to ETSI TS 138 508-1 [4], clause 4.5.

5.3.3.4.2.4.1.2 Procedure

- 1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.2.3.1.4.1-1 in ETSI TS 138 521-2 [2]. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 1.1) On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7 in ETSI TS 138 521-3 [3].
- 2) Set the UE in the Tx beam peak direction found with a 3D EIRP scan as performed in clause K.1.1 in ETSI TS 138 521-2 [2]. Allow at least BEAM_SELECT_WAIT_TIME (note) for the UE Tx beam selection to complete.
- 3) Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms for the UE to reach maximum output power. Allow at least BEAM_SELECT_WAIT_TIME (see note) for the UE Tx beam selection to complete.
- 3.1) On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 under clause 4.6 in ETSI TS 138 521-3 [3].
- 4) SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4], clause 4.9.2 using condition Tx only.
- 5) Measure EIRP of the transmitted signal in the Tx beam peak direction for the assigned NR channel with a rectangular measurement filter with bandwidths according to Table 6.5.2.3.5-1 in ETSI TS 138 521-2 [2]. EIRP measurement procedure defined in annex K. EIRP is calculated considering both polarizations, theta and phi.
- 6) Measure EIRP of the first NR adjacent channel on both lower and upper side of the assigned NR channel, respectively using a rectangular measurement filter with bandwidths according to Table 6.5.2.3.5-1 in ETSI TS 138 521-2 [2]. EIRP measurement procedure defined in annex K. EIRP is calculated considering both polarizations, theta and phi.

7) Calculate the ratios of the power between the values measured in step 5 over step 6 for lower and upper NR ACLR, respectively.

NOTE: When switching to DFT-s-OFDM waveform, as specified in the test configuration Table 5.3.3.4.2.4.1.1-1, send an NR RRCReconfiguration message according to ETSI TS 138 508-1 [4], clause 4.6.3, Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

5.3.3.4.2.4.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.5.2.4.1 in order to show compliance.

5.3.3.4.2.5 Transmitter Adjacent Channel Leakage Power Ratio for Inter-Band EN-DC including both FR1 and FR2

5.3.3.4.2.5.1 Method of test

The conducted and radiated requirements are tested separately as in clause 5.3.3.4.2.3.1 and clause 5.3.3.4.2.4.1 respectively. The EN-DC requirements for maximum output power apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 5.3.3.4.2.

5.3.3.4.2.5.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.5.2.5.2 in order to show compliance.

5.3.3.5	Transmitter Spurious Emissions
5.3.3.5.1	Void
5.3.3.5.2	Transmitter Spurious Emissions for EN-DC
5.3.3.5.2.1	Void
5.3.3.5.2.2	Void
5.3.3.5.2.3	Transmitter Spurious Emissions for Inter-Band EN-DC within FR1
5.3.3.5.2.3.1	Method of test
5.3.3.5.2.3.1.1	General spurious emissions
5.3.3.5.2.3.1.1.	1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, DC configuration specified in Table 5.5B.4.1-1 in ETSI TS 138 521-3[3] and test channel bandwidths specified in ETSI TS 136 508 [13], clause 4.3.1 and ETSI TS 138 508-1 [4], clause 4.3.1 and sub-carrier spacings for the NR cell specified in ETSI TS 138 521-1 [1], clause 5.3. All of these configurations shall be tested with applicable test parameters for each EN-DC configuration, and are shown in Table 5.3.3.5.2.3.1.1.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in ETSI TS 136 521-1 [11], clause A.2.3 for E-UTRA RMC for TDD, ETSI TS 136 521-1 [11], clause A.2.2 for E-UTRA RMC for FDD, and ETSI TS 138 521-1 [1], clause A.2 for NR RMC. Configurations of PDSCH and PDCCH before measurement are specified in ETSI TS 136 521-1 [11], clause C.2 and in ETSI TS 138 521-1 [1], clause C.2 for E-UTRA CG and NR CG respectively.

Outer Full

Table 5.3.3.5.2.3.1.1.1-1: Test configuration table

	Initial Conditions							
Test Environmen as specified in E-clause 4.1	t FSI TS 138 508-1 [4],	Normal						
Test Frequencies as specified in E-clause 4.3.1	S FSI TS 138 508-1 [4],	Low range for PCC and SCC High range for PCC and SCC						
specified in ETSI	nnel bandwidth as TS 136 508 [13], ETSI TS 138 508-1 [4],		5 MHz for E-UTRA CC1 and Lowest for NR CC1, Highest for E-UTRA CC1 and Highest for NR CC1					
Test SCS for the Table 1.1-6	NR cell as specified in	Lowest SCS per Channel Bandwidth						
		Test Paran						
Test ID	Downlink	EN-DC Uplink Configuration						
	Configuration	E-UTRA	A Cell	NR Cell				
		Modulation	RB allocation (note 2)	Modulation	RB allocation (note 1)			
1	N/A for Spurious	QPSK	Outer_1RB _Left	CP-OFDM QPSK	Edge_1RB_Left			
2	N/A for Spurious emission.	QPSK	Outer_1RB _Right	CP-OFDM QPSK	Edge_1RB_Right			

NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 in ETSI TS 138 521-1 [1].

QPSK

NOTE 2: Outer_Full defined as the transmission bandwidth configuration NRB per channel bandwidth for the E-UTRA component as indicated in ETSI TS 136 521-1 [11], Table 5.4.2-1. Outer_1RB_Left defined as 1 RB allocated at the left edge of the E-UTRA component. Outer_1RB_Right defined as 1 RB allocated at the right edge of the E-UTRA component.

Outer_Full CP-OFDM QPSK

- NOTE 3: Only applicable to UEs not supporting UE capability singleUL-Transmission.
- NOTE 4: Only one EN-DC combination per FR1 band is tested for each EN-DC configuration as defined in ETSI TS 138 521-3 [3], clause 5.5B.4.
- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2.1 for UE diagram.
- 2) The parameter settings for the E-UTRA cell are set up according to ETSI TS 136 508 [13], clause 4.4.3, and the parameter settings for the NR cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) E-UTRA downlink signals are initially set up according to clauses C.0, C.1 and C.3.0, and uplink signals according to clauses H.1 and H.3.0 of ETSI TS 136 521-1 [11].
- 4) NR downlink signals are initially set up according to clauses C.0, C.1 and C.2, and uplink signals according to clauses G.0, G.1, G.2, G.3.0 of ETSI TS 138 521-1 [1].
- 5) The UL Reference Measurement channels are set up according to ETSI TS 136 521-1 [11], clause A.2 and ETSI TS 138 521-1 [1], clause A.2 for E-UTRA CG and NR CG respectively.
- 6) Propagation conditions are set according to ETSI TS 136 521-1 [11], clause B.0 and ETSI TS 138 521-1 [1] clause B.0 for E-UTRA CG and NR CG, respectively.
- 7) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in clause 6.5B.3.3.1.4.3 of ETSI TS 138 521-3 [3].
- 8) For both E-UTRA and NR UL uplink carriers active when both bands are TDD, ensure E-UTRA UL transmission overlaps with NR UL transmission in time by giving SCG a delay of 3 subframes, or by giving MCG a delay of 2 subframes.

5.3.3.5.2.3.1.1.2 Procedure

- 1) E-UTRA SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 5.3.3.5.2.3.1.1.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2) NR SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 5.3.3.5.2.3.1.1.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3) Both NR and E-UTRA SS send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level; allow at least 200 ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 4) Measure the power of the transmitted signal with a measurement filter of bandwidths according to Table 4.1.2.6.1.2.1-1. The centre frequency of the filter shall be stepped in contiguous steps according to Table 4.1.2.6.1.2.1-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

5.3.3.5.2.3.1.2 Spurious emission band UE co-existence

5.3.3.5.2.3.1.2.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies and channel bandwidths based on EN-DC operating bands specified in clause 5.5B.4 of ETSI TS 138 521-3 [3], channel bandwidths and sub-carrier spacings for the NR cell specified in clause 5.3 of ETSI TS 138 521-1 [1] and channel bandwidth for the E-UTRA cell are specified in clause 5.4.2 of ETSI TS 136 521-1 [11]. All of these configurations shall be tested with applicable test parameters for each EN-DC configuration specified in clause 5.5B.4.1 of ETSI TS 138 521-3 [3] and are shown in Table 5.3.3.5.2.3.1.2.1-1. The details of the uplink Reference Measurement Channels (RMCs) are specified in ETSI TS 136 521-1 [11], Annex A, clause A.2.3 for E-UTRA RMC for TDD, ETSI TS 136 521-1 [11], Annex A, clause A.2.2 for E-UTRA RMC for FDD, and ETSI TS 138 521-1 [1], Annex A, clause A.2 for NR RMC. Configurations of PDSCH and PDCCH before measurement are specified in ETSI TS 136 521-1 [11], clause C.2 and in ETSI TS 138 521-1 [1], clause C.2 for E-UTRA CG and NR CG respectively.

Table 5.3.3.5.2.3.1.2.1-1: Test configuration table

						Initial Cond	ditions				
	Environi			2 4 5 4 3			NC				
	<u>Pecified i</u> Freguer		38 508	8-1 [4], cla	use 4.1						
	as specified in ETSI TS 138 508-1 [4], clause 4.3.1				For test frequencie	s refer to "Rar	nge" columns.				
Test	EN-DC		andwidth	as specifi	ed in ETSI TS 136 50	8 [13], clause 4.3.1	Refer to "NR N _{RB} "	and "E-UTRA	N _{RB} " columns		
					able 1.1-6		Lowest SCS per C	hannel Bandw	ridth		
						st Parameters for D					
		DC Confi			uration / N _{RB_agg}		DL Alloca		UL Allocation		
ID		TRA		ı IR	E-UTRA	NR	CC MOD	E-UTRA & NR RB	CC MOD	_	A & NR ations
	Band	Range	Band	Range	Ch BW/N _{RB}	Ch BW/N _{RB}	E-UTRA/NR	allocation	E-UTRA/NR	(L _{CRB} @	
		111011190		90	Default T	est Settings for a D	C_XA-YA Configui	ration	l	(02 0	Jul. 17
1	Х	Low	Υ	Low	Highest N _{RB_agg} /Highest N _{RB}	Highest N _{RB_agg} /Highest N _{RB}	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0
2	Х	High	Υ	High	Highest N _{RB_agg} /Highest N _{RB}	Highest N _{RB_agg} /Highest N _{RB}	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@RB _{max}	1@RB _{max}
					Test	Setting for DC_1A_		n			
1	1	Low	28	Low	10/50	20/106	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0
2	1	Low	28	High	10/50	20/106	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0
3	1	High	28	High	10/50	20/106	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	10/50	20/106
					Test	Setting for DC_1A_		n			
1	1	High	77	High	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@49	1@0
2	1	Low	77	Mid	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@272
3	1	Low	77	Low	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@272
4	1	Low	77	note 5	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0
5	1	Low	77	note 5	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0
6	1	Low	77	note 5	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0
7	1	Low	77	note 5	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0
8	1	Low	77	note 5	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0

					Test	Setting for DC_1A	_n78A Configuration	n				
1	1	High	78	High	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@272	
2	1	Low	78	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@272	
3	1	Low	78	Note 3	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0	
					Test	Setting for DC_3A	_n7A Configuration)				
1	3	Low	7	High	20/100	10/52	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@47	1@51	
2	3	Mid	7	High	20/100	10/52	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@51	
3	3	Low	7	Low	20/100	10/52	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@51	
4	3	Mid	7	Low	20/100	10/52	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@0	
5	3	Low	7	High	20/100	10/52	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@51	
	Test Settings for DC_3A_n28A Configuration											
1	3	Low	28	Low	20/100	20/106	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0	
2	3	Low	28	High	20/100	20/106	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@105	
3	3	High	28	High	20/100	20/106	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@105	
					Test	Setting for DC_3A	_n77A Configuration	n				
1	3	Low	77	Note 6	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0	
2	3	Low	77	Note 6	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0	
3	3	Low	77	High	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@272	
4	3	Low	77	Mid	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@75	
5	3	Low	77	Note 6	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0	
6	3	Low	77	High	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0	
7	3	High	77	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@0	

					Test	Setting for DC_3A_	n78A Configuration	n			
1	3	High	78	High	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@272
2	3	High	78	Mid	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@272
3	3	Low	78	Mid	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@272
					Test	Setting for DC_7A_	n28A Configuratio	n			
1	7	High	28	High	20/100	20/106	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@105
					Test	Setting for DC_7A_	n78A Configuratio	n			
1	7	Low	78	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0
2	7	Mid	78	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@0
3	7	Mid	78	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@27	1@272
4	7	Low	78	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@272
5	7	High	78	High	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@77	1@0
6	7	Mid	78	Mid	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@272
7	7	High	78	Mid	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@272
8	7	High	78	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@0
9	7	High	78	Mid	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@0
10	7	Low	78	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@165

Test Settings for DC_8A_n77A Configuration												
1	8	Low	77	Note 4	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0	
2	8	High	77	Low	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@49	1@37	
3	8	High	77	Mid	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@49	1@97	
4	8	Low	77	Mid	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@211	
5	8	Low	77	Note 4	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0	
6	8	High	77	High	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@49	1@272	
7	8	High	77	Mid	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@49	1@0	
8	8	Low	77	Note 4	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0	
9	8	High	77	Low	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@49	1@85	
					Test	Settings for DC_8A	_n78A Configuratio	n				
1	8	High	78	Mid	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@49	1@272	
2	8	High	78	Low	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0	
3	8	Low	78	High	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@49	1@272	
4	8	High	78	High	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0	
5	8	High	78	High	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@49	1@0	
6	8	Mid	78	Low	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@25	1@0	
					Test	Setting for DC_20A	_n28A Configuratio	n				
1	20	Low	28	Low	20/100	20/106	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@105	

					Test	Setting for DC_20	A_n78A Configuratio	n					
1	20	Low	78	High	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@272		
2	20	Low	78	Mid	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0		
3	20	Low	78	Mid	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@205		
4	20	High	78	High	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@104		
5	20	Low	78	Note 8	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0		
	Test Setting for DC_28A_n77A Configuration												
1	28	High	77	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@0		
2	28	Low	77	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@158		
3	28	High	77	High	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@130		
4	28	Low	77	Note 7	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0		
5	28	Low	77	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0		
6	28	Low	77	Mid	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@272		
7	28	Low	77	Note 7	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0		
					Test	Setting for DC_28/	_n78A Configuratio	n					
1	28	Low	n78	Low	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0		
2	28	High	n78	High	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@49	1@272		
3	28	Mid	n78	Mid	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@49	1@272		
4	28	High	n78	Low	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@49	1@190		
5	28	High	n78	Mid	10/50	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0		

	Test Setting for DC_41A_n77A Configuration													
1	41	Mid	n77	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0			
2	41	Low	n77	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@185			
3	41	Low	n77	High	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@57			
4	41	Low	n77	Note 9	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0			
5	41	Low	n77	High	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@0			
6	41	High	n77	High	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@201			
7	41	Mid	n77	Mid	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@46			
8	41	Low	n77	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@214			
9	41	Low	n77	High	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@29			
10	41	High	n77	High	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@272			
11	41	Mid	n77	Mid	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@0			
12	41	Low	n77	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@0			
13	41	Low	n77	High	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@272			
14	41	Mid	n77	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@0			
15	41	High	n77	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@161			
16	41	High	n77	High	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@122			
17	41	Mid	n77	Mid	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@27			
18	41	Low	n77	High	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@240			
19	41	Mid	n77	Note 9	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@125			

					Test S	Settings for DC_41	A_n78A Configuration	on			
1	41	High	n78	Mid	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@0
2	41	Low	n78	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@185
3	41	High	n78	Mid	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@272
4	41	Low	n78	Mid	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@0
5	41	Low	n78	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@214
6	41	Low	n78	Mid	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@69
7	41	Low	n78	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@0
8	41	High	n78	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@161
9	41	Mid	n78	Low	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@99	1@0
10	41	Low	n78	Mid	20/100	100/273	QPSK/CP-OFDM QPSK	NA	QPSK / CP-OFDM QPSK	1@0	1@98

- NOTE 1: Use DC Configuration specific test points if present in the table, otherwise use test points from matching Group Test Settings, if present in the table.

 Otherwise use the Default Test Settings test points.
- NOTE 2: X, Y correspond to the different bands in the DC Configuration. E.g. for DC_1A-n3A, X=1, Y=3.
- NOTE 3: Test Point ID 3 for DC_1A_n78A has the centre carrier frequency of 3 470 MHz in Band 78 (NR ARFCN=631332).
- NOTE 4: Test Point ID 1 for DC_8A_n77A has the centre carrier frequency of 3 950,13 MHz in Band n77 (NR ARFCN=663342). Test Point ID 5 for has the centre carrier frequency of 3 524,55 MHz in Band n77 (NR ARFCN=634970). Test Point ID 8 for has the centre carrier frequency of 3 584,55 MHz in Band n77 (NR ARFCN=638970).
- NOTE 5: Test Point ID 4 for DC_1A_n77Ahas the centre carrier frequency of 3 472,95 MHz in Band n77 (NR ARFCN=631530). Test Point ID 5 has the centre carrier frequency of 3 987,03 MHz in Band n77 (NR ARFCN=665802). Test Point ID 6 for has the centre carrier frequency of 3 857,04 MHz in Band n77 (NR ARFCN=657136). Test Point ID 7 has the centre carrier frequency of 3 874,53 MHz in Band n77 (NR ARFCN=658302). Test Point ID 8 has the centre carrier frequency of 3 887,04 MHz in Band n77 (NR ARFCN=659136).
- NOTE 6: Test Point ID 1 for DC_3A_n77A has the centre carrier frequency of 3 900,03 MHz in Band n77 (NR ARFCN=660002). Test Point ID 2 has the centre carrier frequency of 3 602,55 MHz in Band n77 (NR ARFCN=640170). Test Point ID 5 has the centre carrier frequency of 3 660,15 MHz in Band n77 (NR ARFCN=644010).
- NOTE 7: Test Point ID 4 for DC_28A_n77A has the centre carrier frequency of 3 474,63 MHz in Band n77 (NR ARFCN=631642). Test Point ID 7 has the centre carrier frequency of 3 597,12 MHz in Band n77 (NR ARFCN=639808).
- NOTE 8: Test Point ID 5 for DC_20A_n78A has the centre carrier frequency of 3 477,03 MHz in Band n78 (NR ARFCN=631802).
- NOTE 9: Test Point ID 4 for DC_41A_n77A has the centre carrier frequency of 3 488,55 MHz in Band n77 (NR ARFCN=632570). Test Point ID 19 has the centre carrier frequency of 3 500 MHz in Band n77 (NR ARFCN=633333).

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2.1 for UE diagram.
- 2) The parameter settings for the E-UTRA cell are set up according to ETSI TS 136 508 [13], clause 4.4.3, and the parameter settings for the NR cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) E-UTRA downlink signals are initially set up according to clauses C.0, C.1 and C.3.0, and uplink signals according to clauses H.1 and H.3.0 of ETSI TS 136 521-1 [11].
- 4) NR downlink signals are initially set up according to clauses C.0, C.1 and C.2, and uplink signals according to clauses G.0, G.1, G.2, G.3.0 of ETSI TS 138 521-1 [1].
- 5) The UL Reference Measurement channels are set up according to ETSI TS 136 521-1 [11] clause A.2 and ETSI TS 138 521-1 [1] clause A.2 for E-UTRA CG and NR CG respectively.
- 6) Propagation conditions are set according to ETSI TS 136 521-1 [11], clause B.0 and ETSI TS 138 521-1 [1], clause B.0 for E-UTRA CG and NR CG, respectively.
- 7) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in ETSI TS 138 521-3 [3], clause 6.5B.3.1.2.4.3.
- 8) For both E-UTRA and NR UL uplink carriers active when both bands are TDD, ensure E-UTRA UL transmission overlaps with NR UL transmission in time by giving SCG a delay of 3 E-UTRA subframes, or by giving MCG a delay of 2 subframes.

5.3.3.5.2.3.1.2.2 Procedure

- 1) E-UTRA SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to Table 5.3.3.5.2.3.1.2.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2) NR SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 5.3.3.5.2.3.1.2.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3) Both NR and E-UTRA SS send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level; allow at least 200 ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level
- 4) Measure the power of the transmitted signal with a measurement filter of bandwidths according to Table 4.3.2.6.2.3.2.2-1. The centre frequency of the filter shall be stepped in contiguous steps according to Table 4.3.2.6.2.3.2.2-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

5.3.3.5.2.3.1.3 Additional Spurious Emissions

5.3.3.5.2.3.1.3.1 Initial conditions

Same test description as in clause 5.1.3.5.1.1.3.1 for the NR carrier with the following exception:

The initial test configurations for E-UTRA band consist of environmental conditions, test frequencies, and channel bandwidths based on E-UTRA bands specified in Table 5.3.3.0.2-1. For Initial conditions as in clause 5.1.3.5.1.1.3.1, the following steps will be added to configure E-UTRA component:

- 2.1) The parameter settings for E-UTRA cell are set up according to ETSI TS 136 508-1 [4], clause 4.4.3.
- 3.1) The E-UTRA downlink signal level, uplink signal level are set according to Table 5.3.3.0.2-1 and propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].

Step 6 of Initial conditions as in clause 5.1.3.5.1.1.3.1 is replaced by the following two steps:

6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to ETSI TS 136 508-1 [4], clause 4.5.

On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 5.3.3.0.2-1 under clause 5.3.3.0.2.

5.3.3.5.2.3.1.3.2 Procedure

Same test procedure as in clause 5.1.3.5.1.1.3.2.

5.3.3.5.2.3.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.6.2.3.2 in order to show compliance.

Transmitter Spurious Emissions for Inter-Band EN-DC including FR2 5.3.3.5.2.4

5.3.3.5.2.4.1 Method of test

5.3.3.5.2.4.1.1 Initial conditions

Initial conditions for General spurious emissions and for Spurious emissions for UE co-existence are a set of test configurations the UE needs to be tested in and the steps for the Subscriber Station (SS) to take with the UE to reach the correct measurement state.

Table 5.3.3.5.2.4.1.1-1: Test Configuration Table

	Initial Conditions											
Test Environr	ment as specified in ETSI TS	Normal										
138 508-1 [4]	, clause 4.1											
Test Frequen	cies as specified in ETSI TS	Low range, High range (note 2)										
138 508-1 [4]	, clause 4.3.1											
Test Channel	Bandwidths as specified in ETSI	Highest										
TS 138 508-1	[4], clause 4.3.1											
Test SCS as	specified in Table 1.2-6	120 kHz										
		Test Parameters										
Test ID	Downlink Configuration	Uplink Config	uration									
		Modulation	RB allocation									
	N/A for Spurious Emissions testing		(note 1)									
1	IN/A for Spurious Emissions testing	DFT-s - OFDM QPSK	Inner_Full for PC3									
2		DFT-s - OFDM QPSK	Inner_1RB for PC3 (note 3)									
NOTE 1: Th	e specific configuration of each RB a	Illocation is defined in Table 6.1-1 in ET	SI TS 138 508-2 [5] for PC3.									
1		equency Range lower than (F _{UL_low} - Δf _C	A considerable and the attention of 10 miles									

- range test only in Frequency Range higher than ($F_{UL_high} + \Delta f_{OOB}$).
- When testing Low range configure uplink RB to Inner_1RB_Left for PC3 and when testing High range configure uplink RB to Inner_1RB_Right for PC3.
- Connection between SS and UE is shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.3.1.1 for TE diagram 1) and Figure A.3.4.1.1 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 2.1) The parameter settings for E-UTRA cell are set up according to ETSI TS 136 508-1 [4], clause 4.4.3.
- Downlink signals are initially set up according to clauses C.0, C.1 and C.3.0 in ETSI TS 138 508-2 [5], and uplink signals according to clauses G.0, G.1 and G.3.0 in ETSI TS 138 508-2 [5].
- 3.1) The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 and propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].
- 4) The UL Reference Measurement channels are set according to Table 5.3.3.5.2.4.1.1-1.
- 5) Propagation conditions are set according to clause B.0 in ETSI TS 138 508-2 [5].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to ETSI TS 138 508-1 [4], clause 4.5.

5.3.3.5.2.4.1.2 Procedure

For General spurious emissions and for Spurious emission for UE co-existence, test procedure described as below shall apply:

- 1) Select any of the three Alignment Options (1, 2 or 3) from tables N.2-1 through N.2-3 in ETSI TS 138 521-2 [2] to mount the DUT inside the QZ.
- 1.1) On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7 in ETSI TS 138 521-3 [3].
- 2) If the re-positioning concept is applied, position the device in DUT Orientation 1 if the maximum beam peak direction is within zenith angular range $0^{\circ} \le \theta \le 90^{\circ}$ for the alignment option selected in step 1; position the device in DUT Orientation 2 (either Options 1 or 2) if the maximum beam peak direction is within zenith angular range $90^{\circ} < \theta \le 180^{\circ}$ for DUT Orientation 1 for the alignment option selected in step 1. If the re-positioning concept is not applied, position the device in DUT Orientation 1.
- 3) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.3.3.5.2.4.1.1-1 Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 4. Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in clause K.1.1 in ETSI TS 138 521-2 [2]. Allow at least BEAM_SELECT_WAIT_TIME (see note 3) for the UE Tx beam selection to complete.
- 5. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms for the UE to reach P_{UMAX}. Allow at least BEAM_SELECT_WAIT_TIME (see note 3) for the UE Tx beam selection to complete.
- 6) SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4], clause 4.9.2 using condition Tx only.
- 7) Measure the spurious emissions as per steps outlined below with an exception to the procedure in Annex K in ETSI TS 138 521-2 [2] if the re-positioning concept is applied (see note 4). Step (a) is optional and applicable only if SNR (test requirement level in Table 4.2.2.6.1.2-1 for general spurious emissions and in Table 4.2.2.6.1.2-2 for Spurious emission for UE co-existence minus offset value minus noise floor of the test system) ≥ 0 dB is guaranteed. During measurement the spectrum analyser shall be set to 'Detector' = RMS.
 - a) Perform coarse TRP measurements to identify spurious emission frequencies and corresponding power level according to the procedures in Annex K in ETSI TS 138 521-2 [2], using coarse TRP measurement grid selection criteria as per tables 6.5.3.1.4.2-1 through 6.5.3.1.4.2-3 in ETSI TS 138 521-2 [2]. The measurement is completed in both polarizations θ and φ over frequency range and measurement bandwidth according to Table 4.2.2.6.1.2-1 for general spurious emissions and Table 4.2.2.6.1.2-2 for Spurious emission for UE co-existence. Optionally, a larger and non-constant measurement bandwidth than that of Table 4.2.2.6.1.2-1 for general spurious emissions and Table 4.2.2.6.1.2-2 for Spurious emission for UE co-existence may be applied. The measurement period shall capture the active time slots.

For each spurious emission frequency with coarse TRP identified to be less than the offsets listed in tables 6.5.3.1.4.2-1 through 6.5.3.1.4.2-3 in ETSI TS 138 521-2 [2] from the TRP limit according to Table 4.2.2.6.1.2-1 for general spurious emissions and Table 4.2.2.6.1.2-2 for Spurious emission for UE co-existence, either continue with another coarse TRP procedure and corresponding offset according to step a) or continue with fine TRP procedures according to step b).

Different coarse TRP grids and corresponding offset values may be used for different frequencies. Multiple coarse TRP grids measurements with the corresponding offset values can be performed before the fine TRP measurement grid is applied. The coarse TRP grids and offset values used shall be recorded in the test report.

b) Measure fine TRP measurements according to procedures in annex K in ETSI TS 138 521-2 [2], using fine TRP measurement grid selection criteria as per Table M.4.5-3 in annex M in ETSI TS 138 521-2 [2], for each of the spurious emission frequency identified in step a). Apply a measurement bandwidth according to Table 6.5.3.1.3-2 in ETSI TS 138 521-2 [2].

- 8) SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4], clause 4.9.3.
- NOTE 1: The frequency range defined in Table 6.5.3.1.3-2 in ETSI TS 138 521-2 [2] may be split into ranges. For each range, a different test system, e.g. antenna and/or chamber, may be used. To pass the test case all verdicts of the frequency ranges should pass.
- NOTE 2: Void.
- NOTE 3: The BEAM_SELECT_WAIT_TIME default value is defined in clause K.1.1 in ETSI TS 138 521-2 [2].
- NOTE 4: If the (in-band) beam peak is within $0^{\circ} \le \theta \le 90^{\circ}$: perform first hemispherical TRP scan ($0^{\circ} \le \theta \le 90^{\circ}$) in DUT Orientation 1 and second hemispherical TRP scan ($90^{\circ} > \theta \ge 0^{\circ}$) in DUT Orientation 2. If the (in-band) beam peak is within $90^{\circ} < \theta \le 180^{\circ}$: perform first hemispherical TRP scan ($0^{\circ} \le \theta \le 90^{\circ}$) in DUT Orientation 2 and second hemispherical TRP scan ($90^{\circ} > \theta \ge 0^{\circ}$) in DUT Orientation 1. The DUT with UBF activated needs to be re-positioned during the test.

5.3.3.5.2.4.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.6.2.4.2 in order to show compliance.

5.3.3.5.2.5 Transmitter Spurious Emissions for Inter-Band EN-DC including both FR1 and FR2

5.3.3.5.2.5.1 Method of test

The conducted and radiated requirements are tested separately as in clause 5.3.3.5.2.3.1 and clause 5.3.3.5.2.4.1 respectively. The EN-DC requirements for spurious emissions apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 5.3.3.5.2.

5.3.3.5.2.5.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.6.2.5.2 in order to show compliance.

5.3.3.6	Receiver Reference Sensitivity Level
5.3.3.6.1	Void
5.3.3.6.2	Receiver Reference Sensitivity for EN-DC
5.3.3.6.2.1	Void
5.3.3.6.2.2	Void
5.3.3.6.2.3	Receiver Reference Sensitivity for Inter-Band EN-DC within FR1
5.3.3.6.2.3.1	Method of test
5.3.3.6.2.3.1.1	Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths based on EN-DC operating bands specified in clause 5.5B of ETSI TS 138 521-3[3], channel bandwidths and sub-carrier spacings for the NR cell specified in ETSI TS 138 521-1 [1], clause 5.3 and channel bandwidth for the E-UTRA cell are specified in ETSI TS 136 521-1 [11], clause 5.4.2. All of these configurations shall be tested with applicable test parameters for each EN-DC configuration, and are shown in Table 5.3.3.6.2.3.1.1-1 and for non-exception requirements NR configurations in clause 5.1.3.6.1.1.1.

The details of the uplink and downlink Reference Measurement Channels (RMCs) are specified in ETSI TS 136 521-1 [11], clauses A.2 and A.3 for E-UTRA RMC, and in ETSI TS 138 521-1 [1], clauses A.2 and A.3 for NR RMC respectively. The details of the OCNG patterns used are specified in ETSI TS 136 521-1 [11], clause A.5 for E-UTRA CG and NR CG, respectively. Configurations of PDSCH and PDCCH before measurement are specified in ETSI TS 136 521-1 [11], clause C.2 and in ETSI TS 138 521-1 [1], clause C.2 for E-UTRA CG and NR CG, respectively.

For configurations without any reference sensitivity exception, in a FR1 band where UE supports 4Rx, the test shall be performed only with 4Rx antennas ports connected. For configurations with reference sensitivity exception, in an E-UTRA band or FR1 band where UE supports 4Rx, the test shall be performed only with 4Rx antennas ports connected.

Table 5.3.3.6.2.3.1.2.1-1: Test Configuration Table for EN-DC configurations affected by Reference sensitivity exceptions (two bands)

				Initial C	Conditions							
Test Environn	nent as speci	fied in ETSI TS 138	508-1 [4], cla	use 4.1	Normal, TL/VL, TL/VH, TH/VL, TH/VH							
	•	pecified in ETSI TS 1			For toot fraguencies	For test frequencies refer to "Range" columns.						
E-UTRA Test	Frequencies	as specified in ETSI	TS 136 508	[13], clause 4.3.1	For test frequencies	refer to Range colum	ms.					
Test EN-DC	channel band	width as specified in	ETSI TS 136	508 [13], clause 4.3.1	Pofor to "NP Nos"and	d "E-UTRA N _{RB} " colur	nne					
], clause 4.3.1.			INCIGITO INITINGE AIR	L-OTIVATIVE COID	11113					
NR Test SCS	as specified	in Table 1.1-6			Lowest supported SC	CS						
					NS_01 by default	·						
Network sign	alling value							or the E-UTRA band and				
					Table 7.3.2.3-4 in ET	SI TS 138 521-1 [1] fo	r the NR band.					
Test Parameters for DC Configurations												
		PCC -	E-UTRA			SCG -N	R					
ID	Band	Range	N _{RB}		Band	Range	N _{RB}					
15	UL MOD	DL MOD	CH BW	DLalloc / UL alloc	UL MOD	DL MOD	UL/DL Ch BW	DLalloc / UL alloc				
				Test Settings for a DC	_1A_n28A Configuration	n		•				
1 (noto 2)	1	UL 1 950 / DL 2 140			n28	UL 713,3 / DL 768,3						
1 (note 2)	N/A	QPSK	20 MHz	All RBs / 0	DFT-s-OFDM QPSK	CP-OFDM QPSK	10 MHz	All RBs / REFSENS_ENDC_1				
2 (note 6)	1	UL 1 970 / DL 2 160			n28	UL 708 / DL 763						
2 (11018-0)	N/A	QPSK	20 MHz	All RBs / 0	DFT-s-OFDM QPSK	CP-OFDM QPSK	10 MHz	All RBs / REFSENS_ENDC_1				

								(
	ı	T	1	Test Settings for a DC	_1A_n77A Configuration		1	
	1	UL 1 950/ DL 2 140			n77	UL/DL 3900		
1 (note 2)	QPSK	QPSK	20 MHz	All RBs / REFSENS_ENDC_1	N/A	CP-OFDM QPSK	100 MHz	All RBs / 0
	1	UL 1 950/ DL 2 140			n77	UL/DL 3 870		
2 (note 2)	QPSK	QPSK	20 MHz	All RBs / REFSENS_ENDC_1	N/A	CP-OFDM QPSK	20 MHz	All RBs / 0
	1	UL 1 950/ DL 2 140			n77	UL/DL 4 090,005		
3 (note 3)	QPSK	QPSK	5 MHz	All RBs / REFSENS_ENDC_4	N/A	CP-OFDM QPSK	10 MHz	All RBs / REFSENS_ENDC_4
	1	UL 1 950/ DL 2 140			n77	UL/DL 3 709,995		
4 (note 3)	QPSK	QPSK	5 MHz	All RBs / REFSENS_ENDC_4	N/A	CP-OFDM QPSK	10 MHz	All RBs / REFSENS_ENDC_4
		•		Test Settings for a DC	_1A_n78A Configuration	on	•	
4 (, , , , , ,)	1	UL 1 950 / DL 2 140			n78	UL/DL 3 709,995		
1 (note 3)	QPSK	QPSK	5 MHz	All RBs / REFSENS_ENDC_4	DFT-s-OFDM QPSK	CP-OFDM QPSK	10 MHz	All RBs / REFSENS_ENDC_4
		•	Test Sett	ings for DC_3A_n77A	and DC_3A_n78A Conf	figurations	•	•
	3	Mid			n78	UL/DL 3 495		
1 (note 2)	QPSK	QPSK	20 MHz	All RBs / REFSENS_ENDC_1	N/A	CP-OFDM QPSK	100 MHz	All RBs / 0
	3	Mid			n78	UL/DL 3 525		
2 (note 2)	QPSK	QPSK	20 MHz	All RBs / REFSENS_ENDC_1	N/A	CP-OFDM QPSK	20 MHz	All RBs / 0
	3	Mid			n78	UL/DL 3 685,005		
3 (note 4)	N/A	QPSK	20 MHz	All RBs / 0	DFT-s-OFDM QPSK	CP-OFDM QPSK	20 MHz	All RBs / REFSENS_ENDC_2
	3	Low			n78	High		
3 (note 7)	QPSK	QPSK	20 MHz	All RBs/0	DFT-s-OFDM QPSK	CP-OFDM QPSK	20 MHz	All RBs / REFSENS_ENDC_2
	3	UL 1740 / DL 1835			n78	UL/DL 3 574,995		
4 (note 3)	QPSK	QPSK	5 MHz	All RBs / REFSENS_ENDC_4	DFT-s-OFDM QPSK	CP-OFDM QPSK	10 MHz	All RBs / REFSENS_ENDC_4
	3	UL 1765 / DL 1860			n78	UL/DL 3 435		
5 (note 3)	QPSK	QPSK	5 MHz	All RBs / REFSENS_ENDC_4	DFT-s-OFDM QPSK	CP-OFDM QPSK	10 MHz	All RBs / REFSENS_ENDC_4

								001 000 20 1 10:0:0 (202-
			Test Sett	ings for DC_8A_n77A	and DC_8A_n78A Conf	<u> </u>		T
	8	Mid			n77	UL/DL 3 590,01		
1 (note 2)	QPSK	QPSK	10 MHz	All RBs / REFSENS_ENDC_1	N/A	CP-OFDM QPSK	100 MHz	All RBs / 0
	8	Mid			n77	UL/DL 3 520,005		
2 (note 6)	QPSK	QPSK	10 MHz	All RBs / REFSENS_ENDC_1	N/A	CP-OFDM QPSK	100 MHz	All RBs / 0
	8	UL 897,5			n77	UL/DL 3 634,995		
3 (note 3)	QPSK	QPSK	5 MHz	All RBs / REFSENS_ENDC_4	DFT-s-OFDM QPSK	CP-OFDM QPSK	10 MHz	All RBs / REFSENS_ENDC_4
	•	•	•	Test Settings for a DC	20A_n8A Configuration	n	•	•
1 (note 3)	20	UL 849,5 / DL 808,5			n8	UL 892,5 / DL 937,5		
i (note 3)	QPSK	QPSK	5 MHz	All RBs / REFSENS_ENDC_4	DFT-s-OFDM QPSK	CP-OFDM QPSK	5 MHz	All RBs / REFSENS_ENDC_4
		•		Test Settings for a DC_	20A_n78A Configuration	on		
	20	Mid			n78	Mid		
1 (note 6)	QPSK	QPSK	20 MHz	All RBs / REFSENS_ENDC_1	N/A	CP-OFDM QPSK	100 MHz	All RBs / 0
	20	Mid			n78	UL/DL 3 387,99		
2 (note 2)	QPSK	QPSK	20 MHz	All RBs / REFSENS_ENDC_1	N/A	CP-OFDM QPSK	100 MHz	All RBs / 0
	20	UL 850 / DL 809			n78	UL/DL 3 358,995		
3 (note 3)	QPSK	QPSK	5 MHz	All RBs / REFSENS_ENDC_4	DFT-s-OFDM QPSK	CP-OFDM QPSK	10 MHz	All RBs / REFSENS_ENDC_4
			Test Set		7A/DC_28A_n78A Con ply to DC_28A_n77A)	figuration		
	28	Low			n77/n78	UL/DL 3 540		
1 (note 2)	QPSK	QPSK	10 MHz	All RBs / REFSENS_ENDC_1	N/A	CP-OFDM QPSK	100 MHz	All RBs / 0
	28	Low			n77/n78	Low		
2 (note 6)	QPSK	QPSK	10 MHz	All RBs / REFSENS_ENDC_1	N/A	CP-OFDM QPSK	100 MHz	All RBs / 0
3 (note 3)	28	UL 705,5 / DL 760,5			n77/n78	UL/DL 3 582,495		
3 (HOLE 3)	QPSK	QPSK	5 MHz	All RBs / REFSENS_ENDC_4	CP-OFDM QPSK	CP-OFDM QPSK	10 MHz	All RBs / REFSENS_ENDC_4
	28	Low			n77	UL/DL 3 815,01		
4 (note 4)	N/A	QPSK	10 MHz	All RBs / 0	CP-OFDM QPSK	CP-OFDM QPSK	100 MHz	All RBs / REFSENS_ENDC_2

	Test Settings for a DC_41A_n77A/DC_41A_n78A Configuration											
	41	Low			n77/n78	UL/DL 3 750						
1 (note 4)	N/A	QPSK	20 MHz	All RBs / 0	DFT-s-OFDM QPSK	CP-OFDM QPSK	100 MHz	All RBs / REFSENS_ENDC_2				
	41	High			n77/n78	Low						
2 (note 5)	N/A	QPSK	20 MHz	All RBs / 0	DFT-s-OFDM QPSK	CP-OFDM QPSK	100 MHz	All RBs / REFSENS_ENDC_3				
	41	High			n77/n78	Low						
3 (note 5)	QPSK	QPSK	20 MHz	All RBs / REFSENS_ENDC_3	N/A	CP-OFDM QPSK	100 MHz	All RBs / 0				

NOTE 1: REFSENS_LTE refers to the single carrier Uplink RB allocation for reference sensitivity according to Table 7.3.3-2 of ETSI TS 136 521-1 [11].

REFSENS_NR refers to the single carrier Uplink RB allocation for reference sensitivity according to Table 7.3.2.4.1-3 of ETSI TS 138 521-1 [1].

REFSENS_ENDC_1 refers to the Uplink RB allocation for reference sensitivity exceptions due to UL harmonic interference according to Table 7.3B.2.0.3.1-2 in ETSI TS 138 521-3 [3].

REFSENS_ENDC_2 refers to the Uplink RB allocation for reference sensitivity exceptions due to receiver harmonic mixing according to Table 7.3B.2.0.3.2-2 in ETSLTS 138 521-3 [3].

REFSENS_ENDC_3 refers to the Uplink RB allocation for reference sensitivity exceptions due to cross band isolation according to Table 7.3B.2.0.3.4-2 in ETSI TS 138 521-3 [3].

REFSENS_ENDC_4 refers to the Uplink RB allocation for reference sensitivity exceptions due to dual uplink operation for ENDC according to Table 7.3B.2.0.3.5.1-1 in ETSI TS 138 521-3 [3].

- NOTE 2: Test ID with UL harmonic exception.
- NOTE 3: Test ID with 2UL intermodulation exception.
- NOTE 4: Test ID with UL receiver harmonic mixing.
- NOTE 5: Test ID with UL cross band isolation.
- NOTE 6: Test ID with UL harmonic exception avoided.
- NOTE 7: Test ID with UL receiving harmonic mixing exception avoided.
- NOTE 8: In an E-UTRA band or FR1 band where UE supports 4Rx, the test shall be performed only with 4Rx antennas ports connected.
- NOTE 9: If the NR frequency does not match to a valid NR-ARFCN, apply the closest NR frequency with a valid NR-ARFCN.

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], Annex A, Figure A.3.1.1.1 for TE diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for NR cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) The parameter settings for E-UTRA cell are set up according to ETSI TS 136 508 [13], clause 4.4.3.
- 4) NR downlink signals are initially set up according to clauses C.0, C.1, C.2, C.3.1, and uplink signals according to clauses G.0, G.1, G.2, and G.3.1 of ETSI TS 138 521-1 [1].
- 5) E-UTRA downlink signals are initially set up according to clauses C.0, C.1 and C.3.0, and uplink signals according to clauses H.1 and H.3.0 of ETSI TS 136 521-1 [11].
- 6) For test points in Table 5.3.3.6.2.3.1.2.1-1, the DL and UL Reference Measurement channels are set according to Table 5.3.3.6.2.3.1.2.1-1 for E-UTRA CG and NR CG.
 - 6.1) For non-exception requirements, The E-UTRA downlink signal level, uplink signal level are set according to Table 5.3.3.0.2-1.
- 7) NR propagation conditions are set according to clause B.0 of ETSI TS 138 521-1 [1]. E-UTRA propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].
- 8) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in ETSI TS 138 521-3 [3], clause 7.3B.2.3.4.2.3.
- 9) For non-exception requirements only, on the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 5.3.3.0.2-1 under clause 5.3.3.0.2.

5.3.3.6.2.3.1.2.2 Procedure

For test points in Tables 5.3.3.6.2.3.1.2.1-1:

- 1) SS transmits PDSCH via PDCCH DCI format 1A and PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Tables 5.3.3.6.2.3.1.2.1-1 on the E-UTRA CC and NR CC. The SS sends downlink MAC padding bits on the DL RMC.
- 2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format 0_1 for C_RNTI to schedule the UL RMC according to Tables 5.3.3.6.2.3.1.2.1-1on the E-UTRA CC and NR CC. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3) Set the Downlink signal level for the E-UTRA CC and NR CC to the appropriate REFSENS value defined in Tables 4.3.2.7.2.3.2.2-1 to 4.3.2.7.2.3.2.2-4. Send continuously uplink power control "up" commands in the uplink scheduling information to both carriers to ensure the UE transmits P_{UMAX} level for at least the duration of the Throughput measurement.
- 4) Measure the average throughput of both NR and E-UTRA for a duration sufficient to achieve statistical significance according to clause H.2 of ETSI TS 138 521-1 [1] for NR band, and clause G.2 of ETSI TS 136 521-1 [11] for E-UTRA band.

For non-exception requirements test procedure in clause 5.1.3.6.1.1.2 applies.

5.3.3.6.2.3.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.7.2.3.2 in order to show compliance.

5.3.3.6.2.4 Void

5.3.3.6.2.4 Receiver Reference Sensitivity for Inter-Band EN-DC including FR2

5.3.3.6.2.4.1 Method of test

5.3.3.6.2.4.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 1.2-6. All of these configurations shall be tested with applicable test parameters for each channel bandwidth, and are shown in Table 5.3.3.6.2.4.1.1-1, Table 5.3.3.6.2.4.1.1-2 and Table 5.3.3.6.2.4.1.1-3. The details of the uplink Reference Measurement Channels (RMCs) are specified in clause A.2 in ETSI TS 138 521-2 [2]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 in ETSI TS 138 521-2 [2].

Table 5.3.3.6.2.4.1.1-1: Test Configuration Table

Initial Conditions					
Test Enviro	onment as specified in	ETSI TS 138 508-1 [4],	Normal, TL, TH		
clause 4.1					
Test Frequ	iencies as specified in I	ETSI TS 138 508-1 [4],	Low range, Mid range, High range		
clause 4.3	.1				
Test Channel Bandwidths as specified in ETSI			Lowest, 100 MHz, Highest		
	8-1 [4], clause 4.3.1				
Test SCS	as specified in Table 1.	2-6	120 kHz		
Test Parameters					
Test ID	Downlink (Configuration	Uplink Configuration		
	Modulation	RB allocation	Modulation	RB allocation	
1	CP-OFDM QPSK	Full RB	DFT-s-OFDM QPSK	REFSENS (note 2)	
		(note 1)			
NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in					
	Table 5.3.3.6.2.4.1.1-2.				
	OTE 2: REFSENS refers to Table 5.3.3.6.2.4.1.1-3 which defines uplink RB configuration and start RB				
	location for each SCS,	channel BW and NR band	d.		

Table 5.3.3.6.2.4.1.1-2: Downlink Configuration of each RB allocation

Channel Bandwidth	SCS kHz	LCRBmax	RB allocation (LCRB@RBstart)		
50 MHz	120	32	32@0		
100 MHz	120	66	66@0		
200 MHz	120	132	132@0		
400 MHz	120	264	264@0		
	Test Channel Bandwidths are checked separately for each NR band, the applicable channel bandwidths are specified in Table 1.2-6.				

Table 5.3.3.6.2.4.1.1-3: Uplink configuration for reference sensitivity, LCRB@RBstart format

Operating Band	SCS kHz	50 MHz	100 MHz	200 MHz	400 MHz	Duplex Mode
n257	120	32@0	64@0	128@0	256@0	TDD
n258	120	32@0	64@0	128@0	256@0	TDD

- 1) Connection between SS and UE is shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.

- 2.1) The parameter settings for E-UTRA cell are set up according to ETSI TS 136 508 [13], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1 and C.3.1 in ETSI TS 138 521-2 [2], and uplink signals according to clauses G.0, G.1 and G.3.1 in ETSI TS 138 521-2 [2].
- 3.1) The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 in ETSI TS 138 521-3 [3] and propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].
- 4) The UL Reference Measurement channels are set according to Table 5.3.3.6.2.4.1.1-1, Table 5.3.3.6.2.4.1.1-2 and Table 5.3.3.6.2.4.1.1-3.
- 5) Propagation conditions are set according to clause B.0 in ETSI TS 138 521-2 [2].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to ETSI TS 138 508-1 [4], clause 4.5.

5.3.3.6.2.4.1.2 Procedure

- 1) SS transmits PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC according to Table 5.3.3.6.2.4.1.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 1.1) On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7 in ETSI TS 138 521-3 [3].
- 2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 5.3.3.6.2.4.1.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 3) Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms for the UE to reach P_{UMAX}.
- 4) Set the UE in the Rx beam peak direction found with a 3D EIS scan as performed in clause K.1.2 in ETSI TS 138 521-2 [2]. Allow at least BEAM_SELECT_WAIT_TIME (see note) for the UE Rx beam selection to complete.
- 5) Perform EIS procedure as stated in clause K.1.4 in ETSI TS 138 521-2 [2] to calculate "averaged EIS". At each power level, measure the average throughput for a duration sufficient to achieve statistical significance according to clause H.2 in ETSI TS 138 521-2 [2]. The downlink power step size shall be no more than 0,2 dB when the RF power level is near the sensitivity level.
- 6) Compare the dB value of the "averaged EIS" value corresponding to the Rx beam peak direction identified in step 5 to the test requirement in Table 7.3.2.5-1 in ETSI TS 138 521-2 [2]. If the EIS value is lower or equal to the value in Table 7.3.2.5-1 in ETSI TS 138 521-2 [2], pass the UE. Otherwise fail the UE.

NOTE: The BEAM_SELECT_WAIT_TIME default value is defined in clause K.1.1 in ETSI TS 138 521-2 [2].

5.3.3.6.2.4.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.7.2.4.2 in order to show compliance.

5.3.3.6.2.5 Receiver Reference Sensitivity for Inter-Band EN-DC including both FR1 and FR2

5.3.3.6.2.5.1 Method of test

The conducted and radiated requirements are tested separately as in clause 5.3.3.6.2.3.1 and clause 5.3.3.6.2.4.1 respectively. The EN-DC requirements for reference sensitivity apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 5.3.3.6.2.

5.3.3.6.2.5.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.7.2.5.2 in order to show compliance.

5.3.3.7	Receiver Adjacent Channel Selectivity (ACS)

5.3.3.7.1 Void

5.3.3.7.2 Receiver Adjacent Channel Selectivity for EN-DC

5.3.3.7.2.1 Void

5.3.3.7.2.2 Void

5.3.3.7.2.3 Receiver Adjacent Channel Selectivity for Inter-Band EN-DC within FR1

5.3.3.7.2.3.1 Method of test

5.3.3.7.2.3.1.1 Initial conditions

Same initial conditions as in clause 5.1.3.7.1.1 for the NR carrier with the following exceptions:

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 5.3.3.0.2-1.

For Initial conditions as in clause 5.1.3.7.1.1.1, add step 2.1 and step 3.1 as follows:

- 2.1) The parameter settings for E-UTRA cell are set up according to ETSI TS 136 508 [13], clause 4.4.3.
- 3.1) The E-UTRA downlink signal level, uplink signal level are set according to Table 5.3.3.0.2-1 and propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].

Step 6 of Initial conditions as in clause 5.1.3.7.1.1.1 is replaced by:

6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to ETSI TS 138 508-1 [4], clause 4.5.

Add step 7 to Initial conditions in clause 5.1.3.7.1.1.1 as follows:

7) On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 5.3.3.0.2-1 under clause 5.3.3.0.2.

5.3.3.7.2.3.1.2 Procedure

Same test procedure as in clause 5.1.3.7.1.1.2 for NR Carrier.

5.3.3.7.2.3.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.8.2.3.2 in order to show compliance.

5.3.3.7.2.4 Receiver Adjacent Channel Selectivity for Inter-Band EN-DC including FR2

5.3.3.7.2.4.1 Method of test

5.3.3.7.2.4.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths based on NR operating bands specified in Table 1.2-6. All of these configurations shall be tested with applicable test parameters for each channel bandwidth and subcarrier spacing, are shown in Table 5.3.3.7.2.4.1.1-1. The details of the uplink and downlink Reference Measurement Channels (RMCs) are specified in annex A in ETSI TS 138 521-2 [2]. The details of the OCNG patterns used are specified in annex A in ETSI TS 138 521-2 [2]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 in ETSI TS 138 521-2 [2].

Table 5.3.3.7.2.4.1.1-1: Test Configuration

Initial Conditions							
Test Enviro	nment as specified in ETSI	TS 138 508-1 [4],	Norma	al			
clause 4.1							
Test Freque	encies as specified in ETSI	TS 138 508-1 [4],	Mid ra	nge			
clause 4.3.1							
Test Chann	el Bandwidths as specified	in ETSI	50 MHz, 100 MHz				
TS 138 508	-1 [4], clause 4.3.1						
Test SCS a	s specified in Table 1.2-6		120 kHz				
		Test Pa	ramete	ers			
Test ID	Downlink Co	nfiguration	Uplink Configuration				
	Modulation	RB allocation	า	Modulation	RB allocation		
1	CP-OFDM QPSK	note		DFT-s-OFDM QPSK	note		
NOTE: The specific configuration of each RB allocation is defined in Table 7.3.2.4.1-1 in ETSI TS 138 521-2 [2].							

- 1) Connection between SS and UE is shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.1.4.1 for TE diagram and clause A.3.4 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 2.1) The parameter settings for E-UTRA cell are set up according to ETSI TS 136 508 [13], clause 4.4.3. The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 in ETSI TS 138 521-3 [3] and propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].
- 3) Downlink signals are initially set up according to clauses C.0, C.1 and C.3.1 in ETSI TS 138 521-2 [2], and uplink signals according to clauses G.0, G.1 and G.3.1 in ETSI TS 138 521-2 [2].
- 4) The UL Reference Measurement channels are set according to Table 5.3.3.7.2.4.1.1-1.
- 5) Propagation conditions are set according to clause B.0 in ETSI TS 138 521-2 [2].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to ETSI TS 138 508-1 [4], clause 4.5.
- 7) On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 5.3.3.0.3-1 under clause 5.3.3.0.3.

5.3.3.7.2.4.1.2 Procedure

- Set the UE in the Rx beam peak direction found with a 3D EIRP scan as performed in clause K.1.2 in ETSI
 TS 138 521-2 [2]. Allow at least BEAM_SELECT_WAIT_TIME (see note) for the UE Rx beam selection to
 complete.
- 1.1) On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 5.3.3.0.3-1 under clause 5.3.3.0.3.
- 2) SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 5.3.3.7.2.4.1.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 3) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 5.3.3.7.2.4.1.1-1. Since the UL has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.

- 4) Send Uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power measured by the test system is within the Uplink power control window in Table 5.2.3.7.1.1.2-1 of the target power level in Table 7.5.5-2 (Case 1) in ETSI TS 138 521-2 [2] or Table 7.5.5-3 (Case 2) in ETSI TS 138 521-2 [2], for at least the duration of the throughput measurement.
- 5) Perform Blocking measurement procedure as stated in clause K.1.8 in ETSI TS 138 521-2 [2] using Downlink signal level and Interferer signal level as defined in Table 7.5.5-2 (Case 1) in ETSI TS 138 521-2 [2]. Modulated interferer signal characteristics as defined in annex D in ETSI TS 138 521-2 [2] with frequency below the wanted signal.
- 6) Repeat step 5 using an interfering signal frequency above the wanted signal in Case 1.
- 7) Perform Blocking measurement procedure as stated in clause K.1.8 in ETSI TS 138 521-2 [2] using Downlink signal level and Interferer signal level as defined in Table 7.5.5-3 (Case 2) in ETSI TS 138 521-2 [2]. Modulated interferer signal characteristics as defined in annex D in ETSI TS 138 521-2 [2] with frequency below the wanted signal. Measure throughput for a duration sufficient to achieve statistical significance according to clause H.2 in ETSI TS 138 521-2 [2].
- 8) Repeat step 7 using an interfering signal frequency above the wanted signal in Case 2.
- 9) Repeat for applicable channel bandwidths and operating band combinations in both Case 1 and Case 2.

NOTE: The BEAM SELECT WAIT TIME default value is defined in clause K.1.1 of ETSI TS 138 521-2 [2].

5.3.3.7.2.4.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.8.2.4.2 in order to show compliance.

5.3.3.7.2.5 Receiver Adjacent Channel Selectivity for Inter-Band EN-DC including both FR1 and FR2

5.3.3.7.2.5.1 Method of test

The conducted and radiated requirements are tested separately as in clause 5.3.3.7.2.3.1 and clause 5.3.3.7.2.4.1 respectively. The EN-DC requirements for spurious emissions apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 5.3.3.7.2.

5.3.3.7.2.5.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.8.2.5.2 in order to show compliance.

5.3.3.8	Receiver Blocking Characteristics
5.3.3.8.1	Void
5.3.3.8.2	Receiver Blocking Characteristics for EN-DC
5.3.3.8.2.1	Void
5.3.3.8.2.2	Void
5.3.3.8.2.3	Receiver blocking for Inter-Band EN-DC within FR1
5.3.3.8.2.3.1	Method of test
5.3.3.8.2.3.1.1	In-band blocking
5.3.3.8.2.3.1.1.	1 Initial conditions

Same initial conditions as in clause 5.1.3.8.1.1.1 for the NR carrier with the following exceptions:

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 5.3.3.0.2-1.

For Initial conditions as in clause 5.1.3.8.1.1.1.1, add step 2.1 and step 3.1 as follows:

- 2.1) The parameter settings for E-UTRA cell are set up according to ETSI TS 136 508 [13], clause 4.4.3.
- 3.1) The E-UTRA downlink signal level, uplink signal level are set according to Table 5.3.3.0.2-1 and propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].

Step 6 of Initial conditions as in clause 5.1.3.8.1.1.1.1 is replaced by:

6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to ETSI TS 138 508-1 [4], clause 4.5.

Add step 7 to Initial conditions in clause 5.1.3.8.1.1.1.1 as follows:

7) On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 5.3.3.0.2-1 under clause 5.3.3.0.2.

5.3.3.8.2.3.1.1.2 Procedure

Same test procedure as in clause 5.1.3.8.1.1.1.2 for the NR Carrier.

5.3.3.8.2.3.1.2 Out-of-band blocking

5.3.3.8.2.3.1.2.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, DC configuration specified in ETSI TS 138 521-3 [3], clause 5.5B.4 and test channel bandwidths specified in ETSI TS 136 508 [13], clause 4.3.1 and ETSI TS 138 508-1 [4], clause 4.3.1, and sub-carrier spacing based on NR operating bands specified in ETSI TS 138 521-1 [1], clause 5.3. All of these configurations shall be tested with applicable test parameters for each EN-DC configuration, and are shown in Table 5.3.3.8.2.3.1.2.1-1. The details of the uplink and downlink Reference Measurement Channels (RMCs) and OCNG patterns are specified in ETSI TS 136 521-1 [11], annex A for E-UTRA, and ETSI TS 138 521-1 [1], annex A for NR. Configurations of PDSCH and PDCCH before measurement are specified in ETSI TS 136 521-1 [11], annex C and in ETSI TS 138 521-1 [1], annex C for E-UTRA CG and NR CG respectively.

Table 5.3.3.8.2.3.1.2.1-1: Test configuration table

	Initial Conditions						
Test Environmen	t as specified in E	TSI TS 138 50	8-1 [4],	Normal			
clause 4.1	·						
NR Test Frequen	cies as specified	in ETSI TS 138	3 508-1 [4],	Mid range for	E-UTRA and	d Mid range for I	NR (note 3)
clause 4.3.1							
E-UTRA Test Fre	quencies as spe	cified in ETSI					
TS 136 508 [13],	clause 4.3.1						
NR Test Channel	Bandwidths as s	specified in ETS	SI	Highest for E-	-UTRA and F	lighest for NR	
TS 138 508-1 [4],	, clause 4.3.1						
E-UTRA Test Cha	annel Bandwidth	s as specified ir	n ETSI				
TS 136 508 [13],	clause 4.3.1						
NR Test SCS as	specified in Table	e 1.1-6		Lowest			
			Test Parame	ters			
	Downlink Conf	iguration		Uplink Configuration			
E-UTR	A Cell	NR C	Cell	E-UTR	A Cell	NR C	ell
Modulation	RB allocation	Modulation	RB allocation	Modulation	RB allocation	Modulation	RB allocation
QPSK	Note 1	CP-OFDM QPSK	Note 1	QPSK	Note 1	DFT-s-OFDM QPSK	Note 1

NOTE 1: The specific configuration of uplink and downlink are defined in Table 5.3.3.6.2.3.1.2.1-1.

NOTE 2: In an E-UTRA band or FR1 band where UE supports 4Rx, the test shall be performed only with 4Rx antennas ports connected and 4Rx REFSENS requirement (Table 4.1.2.7.1.2-1 and Table 4.1.2.7.1.2-2) is used in the test requirements.

NOTE 3: For NR band n28, 30 MHz test channel bandwidth is tested with Low range test frequency.

- 1) Connect the SS to the UE antenna connectors as shown in ETSI TS 138 508-1 [4], annex A, in Figure A.3.1.4.2 for SS diagram and clause A.3.2 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 3) Downlink signals are initially set up according to ETSI TS 136 521-1 [11], annex C and ETSI TS 138 521-1 [1] annex C for E-UTRA CG and NR CG respectively, and uplink signals according to ETSI TS 136 521-1 [11] annex H and ETSI TS 138 521-1 [1], annex G for E-UTRA CG and NR CG respectively.
- 4) The UL and DL Reference Measurement channels are ETSI TS 136 521-1 [11], clauses A.2, A.3 and ETSI TS 138 521-1 [1], clauses A.2, A.3 for E-UTRA CG and NR CG respectively.
- 5) Propagation conditions are set according to ETSI TS 136 521-1 [11], clause B.0 and ETSI TS 138 521-1 [1] clause B.0 for E-UTRA CG and NR CG respectively.
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer *MCG* and *SCG*, Connected without release *On* according to ETSI TS 138 508-1 [4], clause 4.5. Message contents are defined in ETSI TS 138 521-3 [3], clause 7.6B.3.3.4.3.

5.3.3.8.2.3.1.2.2 Procedure

- 1) SS transmits PDSCH via PDCCH DCI format 1A and PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 5.3.3.8.2.3.1.2.1-1 on E-UTRA CC and NR CC respectively. The SS sends downlink MAC padding bits on the DL RMC.
- 2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.3.3.8.2.3.1.2.1-1 on E-UTRA CC and NR CC respectively. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3) Set the Downlink signal level to the value as defined in Table 4.2.7.1.2-3 of ETSI EN 301 908-13 [12], Table 4.1.2.9.1.2.2-1, or Table 4.1.2.9.1.2.2-3 for E-UTRA CC and NR CC respectively. For NR CC and E-UTRA CC, send uplink power control commands to the UE using 1 dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window in Table 5.3.3.8.2.3.1.2.2-1 of (P_{CMAX_L,c} 4 dB) for E-UTRA CC, and of 29 dB below P_{CMAX_L,f,c} for NR CC, for at least the duration of the Throughput measurement.

4) Set the parameters of the CW signal generator for an interfering signal below the aggregated component carriers according to Table 4.1.2.9.1.2.2-2 or Table 4.1.2.9.1.2.2-4. The frequency step size is min(BW_{channel}/2 |,5) MHz.

If CW interferer falls in a gap between F_{DL_high} of the E-UTRA or NR band and F_{DL_low} of the NR or E-UTRA band, where the corresponding OOB ranges 1 and 2 in Table 4.2.7.1.2-4 of ETSI EN 301 908-13 [12] and Table 4.1.2.9.1.2.2-2 or Table 4.1.2.9.1.2.2-4 overlap, then the lower level interferer limit of the overlapping OOB ranges applies. CW interferer is eliminated from F_{DL_low} - 15 MHz to F_{DL_high} + 15 MHz of E-UTRA carrier

If F_{DL_high} of the lower E-UTRA or NR band is greater than or equal to the F_{DL_low} of the upper NR or E-UTRA band as in overlapping RX frequency ranges, then the OOB range shall start from the F_{DL_low} of the lower E-UTRA or NR band, and from the F_{DL_high} of the upper NR or E-UTRA band.

For the EN-DC combination listed in Table 4.3.2.9.2.3.2.2-1, exceptions to the requirement specified in Table 4.3.2.9.2.3.2.2-2 are allowed when the second-order intermodulation product of the lower frequency band UL carrier and the CW interfering signal fully or partially overlaps with the higher frequency band DL carrier.

- 5) Measure the average throughput of NR CC for a duration sufficient to achieve statistical significance according to clause H.2 of ETSI TS 138 521-3 [3]. Record the frequencies for which the throughput does not meet the requirements.
- 6) Repeat steps from 4 to 5, using an interfering signal above the aggregated component carriers at step 4.
- 7) Set the Downlink signal level to the value as defined in Table 4.2.7.1.2-3 of ETSI EN 301 908-13 [12], Table 4.1.2.9.1.2.2-1, or Table 4.1.2.9.1.2.2-3 for E-UTRA CC and NR CC respectively. For NR CC and E-UTRA CC, send uplink power control commands to the UE using 1 dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window in Table 5.3.3.8.2.3.1.2.2-1 of (P_{CMAX_L,c} 4 dB) for E-UTRA CC, and of 29 dB below P_{CMAX_L,f,c} for NR CC, for at least the duration of the Throughput measurement.
- 8) Set the parameters of the CW signal generator for an interfering signal below the aggregated component carriers according to Table 4.2.7.1.2-4 of ETSI EN 301 908-13 [12], Table 4.1.2.9.1.2.2-2 or Table 4.1.2.9.1.2.2-4 for E-UTRA CC and NR CC testing respectively. The frequency step size is min(BW_{channel}/2,5) MHz.

If CW interferer falls in a gap between F_{DL_high} of the E-UTRA or NR band and F_{DL_low} of the NR or E-UTRA band, where the corresponding OOB ranges 1 and 2 in Table 4.2.7.1.2-4 of ETSI EN 301 908-13 [12], Table 4.1.2.9.1.2.2-2 or Table 4.1.2.9.1.2.2-4 overlap, then the lower level interferer limit of the overlapping OOB ranges applies. CW interferer is eliminated from F_{DL_low} - 15 MHz to F_{DL_high} + 15 MHz of E-UTRA and NR carriers.

If F_{DL_high} of the lower E-UTRA or NR band is greater than or equal to the F_{DL_low} of the upper NR or E-UTRA band as in overlapping RX frequency ranges, then the OOB range shall start from the F_{DL_low} of the lower E-UTRA or NR band, and from the F_{DL_high} of the upper NR or E-UTRA band.

- 9) Measure the average throughput of E-UTRA CC and NR CC respectively for a duration sufficient to achieve statistical significance according to clause H.2 of ETSI TS 138 521-3 [3]. Record the frequencies for which the throughput does not meet the requirements.
- 10) Repeat steps from 8 to 9, using an interfering signal above the aggregated component carriers at step 8).
- NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is no greater than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in ETSI TS 138 521-3 [3], annex F, clause F.4.

Table 5.3.3.8.2.3.1.2.2-1: Uplink power control window for EN-DC

Uplink power control window (dB) for each BW _{Channel} and carrier centre frequency								
		E-UTRA BW _{Channel} ≤ 20 MHz						
Fc (GHz)	NR BW _{Chanr}	nel ≤ 20 MHz	20 MHz < NR BW _{Channel} ≤ 40 MHz		40 MHz < NR BW _{Channel} ≤ 100 MHz			
NR: Fc ≤ 3	NR CC	E-UTRA CC	NR CC	E-UTRA CC	NR CC	E-UTRA CC		
E-UTRA: Fc ≤ 3	-0,7 to 3,1	-0,7 to 3,4	-0,7 to 3,1	-0,7 to 3,4	-1,4 to 4,1	-1,4 to 4,1		
NR: Fc ≤ 3;	NR CC	E-UTRA CC	NR CC	E-UTRA CC	NR CC	E-UTRA CC		
E-UTRA: 3,0 < Fc ≤	-1 to 3,4	-1 to 3,7	-1 to 3,4	-1 to 3,7	-1,4 to 4,1	-1,4 to 4,1		
4,2								
NR: 3,0 < Fc ≤ 4,2	NR CC	E-UTRA CC	NR CC	E-UTRA CC	NR CC	E-UTRA CC		
E-UTRA: Fc ≤ 4,2	-1 to 3,4	-1 to 3,7	-1 to 3,4	-1 to 3,7	-1,6 to 4,3	-1,6 to 4,3		
NR: 4,2 < Fc ≤ 6,0	NR CC	E-UTRA CC	NR CC	E-UTRA CC	NR CC	E-UTRA CC		
E-UTRA: Fc ≤ 4,2	-1,3 to 3,7	-1,3 to 4	-1,5 to 3,9	-1,5 to 4,2	-1,6 to 4,3	-1,6 to 4,3		

5.3.3.8.2.3.1.3 Narrowband blocking

5.3.3.8.2.3.1.3.1 Initial conditions

Same initial conditions as in clause 5.1.3.8.1.1.3.1 for the NR carrier with the following exceptions:

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 5.3.3.0.2-1.

For Initial conditions as in clause 5.1.3.8.1.1.3.1, add step 2.1 and step 3.1 as follows:

- 2.1) The parameter settings for E-UTRA cell are set up according to ETSI TS 136 508-1 [13], clause 4.4.3.
- 3.1) The E-UTRA downlink signal level, uplink signal level are set according to Table 5.3.3.0.2-1 and propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].

Step 6 of Initial conditions as in clause 5.1.3.8.1.3.1.1 is replaced by:

6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to ETSI TS 138 508 [4], clause 4.5.

Add step 7 to Initial conditions in clause 5.1.3.8.1.1.3.1 as follows:

7) On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 5.3.3.0.2-1 under clause 5.3.3.0.2.

5.3.3.8.2.3.1.3.2 Procedure

Same test procedure as in clause 5.1.3.8.1.1.3.2 for the NR Carrier.

5.3.3.8.2.3.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.9.2.3.2 in order to show compliance.

5.3.3.8.2.1.4 Void

5.3.3.8.2.4 Receiver blocking for Inter-Band EN-DC including FR2

5.3.3.8.2.4.1 Method of test

5.3.3.8.2.4.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.2-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 5.3.3.8.2.4.1.1-1. The details of the uplink Reference Measurement Channels (RMC) are specified in clauses A.2 and A.3 in ETSI TS 138 521-2 [2]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 in ETSI TS 138 521-2 [2]. The details of the OCNG patterns used are specified in clause A.5 in ETSI TS 138 521-2 [2].

Table 5.3.3.8.2.4.1.1-1: Test Configuration Table

	Initial Conditions							
Test Enviro	nment as specified in ETSI	TS 138 508-1 [4],	Normal					
clause 4.1	•							
Test Freque	encies as specified in ETSI	TS 138 508-1 [4],	Mid range					
clause 4.3.1	1							
Test Chann	el Bandwidths as specified	in ETSI TS 138 508-1 [4],	50 MHz, 100 MHz	50 MHz, 100 MHz				
clause 4.3.1	1							
Test SCS a	s specified in Table 1.2-6		120 kHz					
		Test Paramete	rs					
Test ID	Downlink Co	onfiguration	Uplink Con	figuration				
	Modulation	RB allocation	Modulation	RB allocation				
1	CP-OFDM QPSK	note	DFT-s-OFDM QPSK	note				
NOTE: 1	NOTE: The specific configuration of each RB allocation is defined in Table 7.3.2.4.1-1 in ETSI TS 138 521-2 [2].							

- 1) Connection between SS and UE is shown in ETSI TS 138 508-1 [4], annex A, in Figure A.3.1.4.1 for TE diagram and clause A.3.4 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 2.1) The parameter settings for E-UTRA cell are set up according to ETSI TS 136 508 [13], clause 4.4.3.
- 3) Downlink signals are initially set up according to clauses C.0, C.1 and C.3.1 in ETSI TS 138 521-2 [2], and uplink signals according to clauses G.0, G.1 and G.3.1 in ETSI TS 138 521-2 [2].
- 3.1) The E-UTRA downlink signal level, uplink signal level are set according to Table 4.6-1 in ETSI TS 138 521-3 [3] and propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].
- 4) The DL and UL Reference Measurement channels are set according to Table 5.3.3.8.2.4.1.1-1.
- 5) Propagation conditions are set according to clause B.0 in ETSI TS 138 521-2 [2].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to ETSI TS 138 508-1 [4], clause 4.5.
- 7) On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.6-1 in ETSI TS 138 521-3 [3], under clause 4.6.

5.3.3.8.2.4.1.2 Procedure

- 1) Set the UE in the Rx beam peak direction found with a 3D EIRP scan as performed in clause K.1.2 in ETSI TS 138 521-2 [2]. Allow at least BEAM_SELECT_WAIT_TIME (see note) for the UE Rx beam selection to complete.
- 2) SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 5.3.3.8.2.4.1.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 3) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format [0_1] for C_RNTI to schedule the UL RMC according to Table 5.3.3.8.2.4.1.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.

- 4) Send Uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power measured by the test system is within the Uplink power control window in Table 5.2.3.7.1.1.2-1 of the target power level in Table 4.2.2.9.1.2-1, for at least the duration of the throughput measurement.
- 5) Perform the Blocking measurement procedure as stated in clause K.1.8 in ETSI TS 138 521-2 [2] using Downlink signal level and Interferer signal level as defined in Table 7.6.2.5-1 in ETSI TS 138 521-2 [2]. Modulated interferer signal characteristics as defined in annex D in ETSI TS 138 521-2 [2]. Measure throughput for a duration sufficient to achieve statistical significance according to clause H.2 in ETSI TS 138 521-2 [2].
- 6) Repeat steps using interfering signals specified in Table 7.6.2.5-1 in ETSI TS 138 521-2 [2]. The ranges are covered in steps equal to the interferer bandwidth. Interferer frequencies should be chosen starting with an offset nearest to the centre frequency and sweep outwards towards the band edges. In order to ensure that full range is tested for interferer frequency, run last test steps at frequency equal to FInterferer range limit defined at the corresponding band edge.

NOTE: The BEAM_SELECT_WAIT_TIME default value is defined in clause K.1.1 in ETSI TS 138 521-2 [2].

5.3.3.8.2.4.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.9.2.4.2 in order to show compliance.

5.3.3.8.2.5 Receiver blocking for Inter-Band EN-DC including both FR1 and FR2

5.3.3.8.2.5.1 Method of test

The conducted and radiated requirements are tested separately as in clause 5.3.3.8.2.3.1 and clause 5.3.3.8.2.4.1 respectively. The EN-DC requirements for spurious emissions apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 5.3.3.8.2.

5.3.3.8.2.5.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.9.2.5.2 in order to show compliance.

5.3.3.9 Receiver Spurious Response

5	3	3	.9.	1	V	Λi	Ч	
J					V	v	u	

5.3.3.9.2 Receiver Spurious Response for EN-DC

5	.3.3.9.	2 1	Void
v		<u> </u>	v Olu

5.3.3.9.2.2 Void

5.3.3.9.2.3 Receiver Spurious Response for Inter-Band EN-DC within FR1

5.3.3.9.2.3.1 Method of test

5.3.3.9.2.3.1.1 Initial conditions

The initial conditions shall be the same as in clause 5.3.3.8.2.3.1.2.1 in order to test spurious responses obtained in clause 5.3.3.8.2.3.1.2 under the same conditions.

5.3.3.9.2.3.1.2 Procedure

1) SS transmits PDSCH via PDCCH DCI format 1A and PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 5.3.3.8.2.3.1.2.1-1 on E-UTRA CC and NR CC respectively. The SS sends downlink MAC padding bits on the DL RMC.

- 2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 and DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 5.3.3.8.2.3.1.2.1-1 on E-UTRA CC and NR CC respectively. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3) Set the Downlink signal level to the value as defined in Table 4.2.8.1.2-1 of ETSI EN 301 908-13 [12], Table 4.1.2.10.1.2-1, or Table 4.1.2.10.1.2-2 for E-UTRA CC and NR CC respectively. For NR CC and E-UTRA CC, send uplink power control commands to the UE using 1 dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window in Table 5.3.3.8.2.3.1.2.2-1 of (P_{CMAX_L,c} 4 dB) for E-UTRA CC, and of 29 dB below P_{CMAX_L,f,c} for NR CC, for at least the duration of the Throughput measurement.
- 4) Set the parameters of the CW signal generator for an interfering signal according to Table 4.1.2.10.1.2-3. The spurious frequencies are taken from records in test procedures in clause 5.3.3.8.2.3.1.2.2.
- 5) For the spurious frequency, measure the average throughput of NR CC for a duration sufficient to achieve statistical significance according to clause H.2 of ETSI TS 138 521-3 [3].
- 6) Set the Downlink signal level to the value as defined in Table 4.2.8.1.2-1 of ETSI EN 301 908-13 [12], Table 4.1.2.10.1.2-1, or Table 4.1.2.10.1.2-2 for E-UTRA CC and NR CC respectively. For NR CC and E-UTRA CC, send uplink power control commands to the UE using 1 dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window in Table 5.3.3.8.2.3.1.2.2-1 of (P_{CMAX_L,c} 4 dB) for E-UTRA CC, and of 29 dB below P_{CMAX_L,f,c} for NR CC, for at least the duration of the Throughput measurement.
- 7) Set the parameters of the CW signal generator for an interfering signal according to Table 4.1.2.10.1.2-3. The spurious frequencies are taken from records in test procedures in clause 5.3.3.8.2.3.1.2.2 for E-UTRA CC and NR CC testing respectively.
- 8) For the spurious frequency, measure the average throughput of E-UTRA CC and NR CC respectively for a duration sufficient to achieve statistical significance according to clause H.2 of ETSI TS 138 521-3 [3].

NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is no greater than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in ETSI TS 138 521-3 [3], annex F, clause F.4.

5.3.3.9.2.3.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.10.2.3.2 in order to show compliance.

5.3.3.9.2.4 Void

5.3.3.9.2.5 Receiver Spurious Response for Inter-Band EN-DC including both FR1 and FR2

5.3.3.9.2.5.1 Method of test

The conducted requirements are tested separately as in clause 5.3.3.9.2.3. The requirement is sufficiently verified in clause 5.3.3.9.2.3 and no additional test is required.

5.3.3.9.2.5.2 Test requirements

Clause 5.3.3.9.2.3.2 applies.

5.3.3.10	Receiver Intermodulation Characteristic
5.3.3.10.1	Void
5.3.3.10.2	Wideband Intermodulation for EN-DC
5.3.3.10.2.1	Void
5.3.3.10.2.2	Void
5.3.3.10.2.3	Wideband Intermodulation for Inter-Band EN-DC within FR1
5.3.3.10.2.3.1	Method of test

Same initial conditions as in clause 5.1.3.10.1.1 for the NR carrier with the following exceptions:

Initial conditions

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 5.3.3.0.2-1.

For Initial conditions as in clause 5.1.3.10.1.1.1, the following steps are added to configure E-UTRA component:

- 2.1) The parameter settings for E-UTRA cell are set up according to ETSI TS 136 508 [13], clause 4.4.3. The E-UTRA downlink signal level, uplink signal level are set according to Table 5.3.3.0.2-1 and propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].
- On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 5.3.3.0.2-1 under clause 5.3.3.0.2.

Step 6 of Initial conditions as in clause 5.1.3.10.1.1.1 is replaced by:

6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to ETSI TS 138 508-1 [4], clause 4.5.

5.3.3.10.2.3.1.2 Procedure

5.3.3.10.2.3.1.1

Same test procedure as in clause 5.1.3.10.1.1.2 for NR Carrier.

5.3.3.10.2.3.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.11.2.3.2 in order to show compliance.

5.3.3.10.2.4	Void
5.3.3.10.2.5	Receiver Intermodulation for Inter-Band EN-DC including both FR1 and FR2
5.3.3.10.2.5.1	Method of test

The conducted requirements are tested separately as in clause 5.3.3.10.2.3.1. The requirement is sufficiently verified in clause 5.3.3.10.2.3 and no additional test is required.

5.3.3.10.2.5.2 Test requirements

Clause 5.3.3.10.2.3.2 applies.

5.3.3.11 Receiver Spurious Emissions

5.3.3.11.1 Void

5.3.3.11.2 Receiver Spurious Emissions for EN-DC

5.3.3.11.2.1 Void

5.3.3.11.2.2 Void

5.3.3.11.2.3 Receiver Spurious Emissions for Inter-Band EN-DC within FR1

5.3.3.11.2.3.1 Method of test

5.3.3.11.2.3.1.1 Initial conditions

Same initial conditions as in clause 5.1.3.11.1.1 for the NR carrier with the following exceptions:

The initial test configurations for E-UTRA consist of test frequency based on E-UTRA operating band and test channel bandwidth as specified in Table 5.3.3.0.2-1.

For Initial conditions as in clause 5.1.3.11.1.1.1, the following steps are added to configure E-UTRA component:

- 2.1) The parameter settings for E-UTRA cell are set up according to ETSI TS 136 508 [13], clause 4.4.3. The E-UTRA downlink signal level, uplink signal level are set according to Table 5.3.3.0.2-1 and propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].
- 7) On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set *TimeAlignmentTimerDedicated* IE to infinity and disable downlink and uplink scheduling, all as per Table 5.3.3.0.2-1 under clause 5.3.3.0.2.

Step 6 of Initial conditions as in clause 5.1.3.11.1.1 is replaced by:

6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release *On* according to ETSI TS 138 508-1 [4] clause 4.5.

5.3.3.11.2.3.1.2 Procedure

Same test procedure as in clause 5.1.3.11.1.1.2 for NR Carrier.

5.3.3.11.2.3.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.12.2.3.2 in order to show compliance.

5.3.3.11.2.4 Void

5.3.3.11.2.4 Receiver Spurious Emissions for Inter-Band EN-DC including FR2

5.3.3.11.2.4.1 Method of test

5.3.3.11.2.4.1.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in Table 1.2-6. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 5.3.3.11.2.4.1.1-1. The details of the uplink and downlink Reference Measurement Channels (RMCs) are specified in clauses A.2 and A.3 in ETSI TS 138 521-2 [2]. Configurations of PDSCH and PDCCH before measurement are specified in clause C.2 in ETSI TS 138 521-2 [2].

Table 5.3.3.11.2.4.1.1-1: Test Configuration Table

Default Conditions						
	Test Environment as specified in ETSI					
TS 138 508	-1 [4], clause 4.1					
Test Freque	encies as specified in ET	SI	Low range, Mi	d range, High range		
TS 138 508	-1 [4], clause 4.3.1					
Test Chann	el Bandwidths as specifi	ied in	Highest			
ETSI TS 13	8 508-1 [4], clause 4.3.1					
Test SCS a	s specified in Table 1.2-	6	Highest			
		To	est Parameter	s		
	Downlink Co	nfigura	tion	Uplink Con	figuration	
Test ID	Mod'n	RB a	allocation	Mod'n	RB allocation	
1	N/A	0 N/A 0			0	
NOTE: The specific configuration of uplink and downlink are defined in Table 7.3.2.4.1-1 in ETSI						
Т	S 138 521-2 [2].					

- 1) Connection between SS and UE is shown in ETSI TS 138 508-1 [4], annex A, Figure A.3.3.1.1 for TE diagram and Figure A.3.4.1.1 for UE diagram.
- 2) The parameter settings for the cell are set up according to ETSI TS 138 508-1 [4], clause 4.4.3.
- 2.1) The parameter settings for E-UTRA cell are set up according to ETSI TS 136 508 [13], clause 4.4.3.
- Downlink signals are initially set up according to clauses C.0, C.1, C.2, C.3.1, and uplink signals according to clauses G.0, G.1, G.2, G.3.1 in ETSI TS 138 521-2 [2].
- 3.1) The E-UTRA downlink signal level, uplink signal level are set according to Table 4.7-1 in ETSI TS 138 521-2 [2] and propagation conditions are set according to clause B.0 of ETSI TS 136 521-1 [11].
- 4) The DL and UL Reference Measurement channels are set according to Table 5.3.3.11.2.4.1.1-1.
- 5) Propagation conditions are set according to clause B.0 in ETSI TS 138 521-2 [2].
- 6) Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity EN-DC, DC bearer MCG and SCG, Connected without release On according to ETSI TS 138 508-1 [4], clause 4.5.

5.3.3.11.2.4.1.2 Procedure

- 1) Select any of the three Alignment Options (1, 2 or 3) from Tables N.2-1 through N.2-3 in ETSI TS 138 521-2 [2] to mount the DUT inside the QZ.
- 1.1) On the E-UTRA carrier, disable periodic and aperiodic CQI reports, disable SRS, set TimeAlignmentTimerDedicated IE to infinity and disable downlink and uplink scheduling, all as per Table 4.7-1 under clause 4.7 in ETSI TS 138 521-3 [3].
- 2) If the re-positioning concept is applied, position the device in DUT Orientation 1 if the maximum beam peak direction is within zenith angular range $0^{\circ} \le \theta \le 90^{\circ}$ for the alignment option selected in step 1; position the device in DUT Orientation 2 (either Options 1 or 2) if the maximum beam peak direction is within zenith angular range $90^{\circ} < \theta \le 180^{\circ}$ for DUT Orientation 1 for the alignment option selected in step 1. If the re-positioning concept is not applied, position the device in DUT Orientation 1.
- 3) Set the UE in the Inband Tx beam peak direction found with a 3D EIRP scan as performed in clause K.1.1 of ETSI TS 138 521-2 [2] using the uplink configuration in clause 5.2.3.1.1. Allow at least BEAM_SELECT_WAIT_TIME (see note 3) for the UE Tx beam selection to complete.

- 4) SS activates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4], clause 4.9.2 using condition Tx only.
- Measure the spurious emissions as per steps outlined below with an exception to the procedure in Annex K ETSI TS 138 521-2 [2] if the re-positioning concept is applied (see note 4). Step (a) is optional and applicable only if SNR (test requirement level in Table 4.2.2.10.1.2-1 minus offset value minus noise floor of the test system) ≥ 0 dB is guaranteed.
 - a) Perform coarse TRP measurements to identify spurious emission frequencies and corresponding power level according to the procedures in Annex K of ETSI TS 138 521-2 [2], using coarse TRP measurement grid selection criteria as per tables 6.5.3.1.4.2-1 through 6.5.3.1.4.2-3 in ETSI TS 138 521-2 [2]. The measurement is completed in both polarizations θ and φ over frequency range and measurement bandwidth according to Table 4.2.2.10.1.2-1. Optionally, a larger and non-constant measurement bandwidth than that of Table 4.2.2.10.1.2-1 may be applied. The measurement period shall capture the active time slots. For each spurious emission frequency with coarse TRP identified to be less than the offsets listed in Tables 6.5.3.1.4.2-1 through 6.5.3.1.4.2-3 in ETSI TS 138 521-2 [2] from the TRP limit according to Table 4.2.2.10.1.2-1, either continue with another coarse TRP procedure and corresponding offset according to step (a) or continue with fine TRP procedures according to step b).

Different coarse TRP grids and corresponding offset values may be used for different frequencies. Multiple coarse TRP grids measurements with the corresponding offset values can be performed before the fine TRP measurement grid is applied. The coarse TRP grids and offset values used shall be recorded in the test report.

- b) Measure fine TRP measurements according to procedures in annex K in ETSI TS 138 521-2 [2], using fine TRP measurement grid selection criteria as per Table M.4.5-3 in annex M in ETSI TS 138 521-2 [2], for each of the spurious emission frequency identified in step a). Apply a measurement bandwidth according to Table 7.9.5-1 or Table 7.9.5-2 in ETSI TS 138 521-2 [2].
- 6) SS deactivates the UE Beamlock Function (UBF) by performing the procedure as specified in ETSI TS 138 508-1 [4], clause 4.9.3.
- NOTE 1: The frequency range defined in Table 7.9.5-1 or Table 7.9.5-2 in ETSI TS 138 521-2 [2] may be split into ranges. For each range, a different test system, e.g. antenna and/or chamber, may be used. To pass the test case all verdicts of the frequency ranges should pass.
- NOTE 2: Void.
- NOTE 3: The BEAM_SELECT_WAIT_TIME default value is defined in clause K.1.1 in ETSI TS 138 521-2 [2].
- NOTE 4: If the (in-band) beam peak is within $0^{\circ} \le \theta \le 90^{\circ}$: perform first hemispherical TRP scan $(0^{\circ} \le \theta \le 90^{\circ})$ in DUT Orientation 1 and second hemispherical TRP scan $(90^{\circ} > \theta \ge 0^{\circ})$ in DUT Orientation 2. If the (in-band) beam peak is within $90^{\circ} < \theta \le 180^{\circ}$: perform first hemispherical TRP scan $(0^{\circ} \le \theta \le 90^{\circ})$ in DUT Orientation 2 and second hemispherical TRP scan $(90^{\circ} > \theta \ge 0^{\circ})$ in DUT Orientation 1. The DUT with UBF activated needs to be re-positioned during the test.

5.3.3.11.2.4.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.12.2.4.2 in order to show compliance.

5.3.3.11.2.5 Receiver Spurious Emissions for Inter-Band EN-DC including both FR1 and FR2

5.3.3.11.2.5.1 Method of test

The conducted and radiated requirements are tested separately as in clause 5.3.3.11.2.3.1 and clause 5.3.3.11.2.4.1 respectively. The EN-DC requirements for spurious emissions apply and are tested as part of the EN-DC within FR1 and EN-DC including FR2 test cases in clause 5.3.3.11.2.

5.3.3.11.2.5.2 Test requirements

The results obtained shall be compared to the limits in clause 4.3.2.12.2.5.2 in order to show compliance.

Annex A (informative):

Relationship between the present document and the essential requirements of Directive 2014/53/EU

The present document has been prepared under the Commission's standardisation request C(2015) 5376 final [i.9] to provide one voluntary means of conforming to the essential requirements of Directive 2014/53/EU on the harmonisation of the laws of the Member States relating to the making available on the market of radio equipment and repealing Directive 1999/5/EC [i.2].

Once the present document is cited in the Official Journal of the European Union under that Directive, compliance with the normative clauses of the present document given in Tables A-1 to A-3 confers, within the limits of the scope of the present document, a presumption of conformity with the corresponding essential requirements of that Directive, and associated EFTA regulations.

Table A-1: Relationship between the present document and the essential requirements of Directive 2014/53/EU [i.2] for devices operating in frequency range 1

	Harmonised Standard ETSI EN 301 908-25							
	Requireme	Requirement Conditionality						
No	Description	Essential requirements of Directive	Clause(s) of the present document	U/C	Condition			
1	Transmitter maximum output power	3.2	4.1.2.2	U				
2	Transmitter minimum output power	3.2	4.1.2.3	U				
3	Transmitter spectrum emission mask	3.2	4.1.2.4	U				
4	Transmitter Adjacent Channel Leakage Power Ratio	3.2	4.1.2.5	U				
5	Transmitter spurious emissions	3.2	4.1.2.6	U				
6	Receiver Reference Sensitivity Level	3.2	4.1.2.7	U				
7	Receiver adjacent channel selectivity (ACS)	3.2	4.1.2.8	U				
8	Receiver blocking characteristics	3.2	4.1.2.9	U				
9	Receiver spurious response	3.2	4.1.2.10	U				
10	Receiver intermodulation characteristics	3.2	4.1.2.11	U				
11	Receiver spurious emissions	3.2	4.1.2.12	U				
12	Transmit OFF power	3.2	4.1.2.13	U				

Table A-2: Relationship between the present document and the essential requirements of Directive 2014/53/EU [i.2] for devices operating in frequency range 2

	Harmonised Standard ETSI EN 301 908-25							
	Requireme	Requi	irement Conditionality					
No	Description	Essential requirements of Directive	Clause(s) of the present document	U/C	Condition			
1	Transmitter maximum output power	3.2	4.2.2.2	U				
2	Transmitter minimum output power	3.2	4.2.2.3	U				
3	Transmitter spectrum emission mask	3.2	4.2.2.4	U				
4	Transmitter Adjacent Channel Leakage Power Ratio	3.2	4.2.2.5	U				
5	Transmitter spurious emissions	3.2	4.2.2.6	U				
6	Receiver Reference Sensitivity Level	3.2	4.2.2.7	U				
7	Receiver adjacent channel selectivity (ACS)	3.2	4.2.2.8	U				
8	Receiver blocking characteristics	3.2	4.2.2.9	U				
9	Receiver spurious emissions	3.2	4.2.2.10	U				

Table A-3: Relationship between the present document and the essential requirements of Directive 2014/53/EU for devices operating in interworking with other radios

Harmonised Standard ETSI EN 301 908-25							
	Requireme	Requirement Conditionality					
No	Description	Essential requirements of Directive	Clause(s) of the present document	U/C	Condition		
1	Transmitter maximum output power	3.2	4.3.2.2	U			
2	Transmitter minimum output power	3.2	4.3.2.3	U			
3	Transmitter spectrum emission mask	3.2	4.3.2.4	U			
4	Transmitter Adjacent Channel Leakage Power Ratio	3.2	4.3.2.5	U			
5	Transmitter spurious emissions	3.2	4.3.2.6	U			
6	Receiver Reference Sensitivity Level	3.2	4.3.2.7	U			
7	Receiver adjacent channel selectivity (ACS)	3.2	4.3.2.8	U			
8	Receiver blocking characteristics	3.2	4.3.2.9	U			
9	Receiver spurious response	3.2	4.3.2.10	U			
10	Receiver intermodulation characteristics	3.2	4.3.2.11	U			
11	Receiver spurious emissions	3.2	4.3.2.12	U			

Key to columns:

Requirement:

No A unique identifier for one row of the table which may be used to identify a requirement.

Description A textual reference to the requirement.

Essential requirements of Directive

Identification of article(s) defining the requirement in the Directive.

Clause(s) of the present document

Identification of clause(s) defining the requirement in the present document unless another document is referenced explicitly.

Requirement Conditionality:

U/C Indicates whether the requirement is unconditionally applicable (U) or is conditional upon the

manufacturer's claimed functionality of the equipment (C).

Condition Explains the conditions when the requirement is or is not applicable for a requirement which is

classified "conditional".

Presumption of conformity stays valid only as long as a reference to the present document is maintained in the list published in the Official Journal of the European Union. Users of the present document should consult frequently the latest list published in the Official Journal of the European Union.

Other Union legislation may be applicable to the product(s) falling within the scope of the present document.

Annex B (normative): Environmental profile

B.1 General

B.1.1 Introduction

This annex specifies the environmental profile of the UE.

B.1.2 Temperature

The UE shall fulfil all the requirements in the full temperature range of:

Table B.1.2-1: Temperature Test Environment

+15 °C to +35 °C	For normal conditions (with relative humidity up to 75 %)
-10 °C to +55 °C	For extreme conditions (see IEC 60068-2-1 [9] and IEC 60068-2-2 [10])

Outside this temperature range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in ETSI TS 138 101-1 [6], for extreme operation.

The normative reference for this requirement is ETSI TS 138 101-1 [6], clause E.2.1.

Some tests are performed also in extreme temperature conditions. These test conditions are denoted as TL (Temperature Low, -10 °C) and TH (Temperature High, +55 °C).

B.1.3 Voltage

The UE shall fulfil all the requirements in the full voltage range, i.e. the voltage range between the extreme voltages.

The manufacturer shall declare the lower and higher extreme voltages and the approximate shutdown voltage. For the equipment that can be operated from one or more of the power sources listed below, the lower extreme voltage shall not be higher and the higher extreme voltage shall not be lower than that specified below.

Table B.1.3-1: Voltage Test Environment

Power source	Lower extreme Voltage	Higher extreme voltage	Normal conditions voltage
AC mains	0,9 × nominal	1,1 × nominal	nominal
Regulated lead acid battery	0,9 × nominal	1,3 × nominal	1,1 × nominal
Non regulated batteries:			
Leclanché	0,85 × nominal	Nominal	Nominal
Lithium	0,95 × nominal	1,1 × Nominal	1,1 × Nominal
Mercury/nickel and cadmium	0,90 × nominal		Nominal

Outside this voltage range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in ETSI TS 138 101-1 [6] for extreme operation. In particular, the UE shall inhibit all RF transmissions when the power supply voltage is below the manufacturer declared shutdown voltage.

The normative reference for this requirement is ETSI TS 138 101-1 [6], clause E.2.2.

Some tests are performed also in extreme voltage conditions. These test conditions are denoted as VL (Lower extreme Voltage) and VH (Higher extreme Voltage).

B.1.4 Test environment

Where a normal environment is required then the normal conditions shown in clauses B.1.2 and B.1.3 shall be applied.

Where an extreme environment is required then the various combinations of extreme temperatures together with the extreme voltages shown in clauses B.1.2 and B.1.3 shall be applied. The combinations are:

- Low extreme Temperature/Low extreme Voltage (TL/VL);
- Low extreme Temperature/High extreme Voltage (TL/VH);
- High extreme Temperature/Low extreme Voltage (TH/VL);
- High extreme Temperature/High extreme Voltage (TH/VH).

Annex C (informative): Selection of receiver parameters

C.0 Introduction

Receiver parameters under article 3.2 of Directive 2014/53/EU [i.1] listed in ETSI EG 203 336 [i.3] v1.2.1 are analysed and the parameters which are applicable to the present document are specified in respective clauses. [In each clause in Annex C the definition of the requirement is taken from the ETSI EG 203 336 [i.3].

C.1 Receiver sensitivity

Receiver sensitivity is the ability to receive a wanted signal at low input signal levels while providing a pre-determined level of performance. Receiver sensitivity is specified in the present document in clauses 4.1.2.7, 4.2.2.7 and 4.3.2.7.

C.2 Receiver co-channel rejection

Receiver co-channel rejection is a measure of the capability of a receiver to receive a wanted signal, without exceeding a given degradation, due to the presence of an unwanted signal, both signals being at the nominal frequency of the receiver.

In frequency bands covered by the present document, any modulation, channel width, centre frequency and data rate may be used. A combination of many signals of widely different characteristics manifests itself primarily as an increase in the noise floor.

Thus, a specific test for co-channel rejection is not included because the co-channel rejection performance of the receiver combined with the receiver noise figure directly affects the sensitivity performance, which is tested. The required limits for sensitivity ensure that products have the required co-channel rejection.

C.3 Receiver adjacent channel selectivity

Adjacent channel selectivity is a measure of the receiver capability to receive a wanted modulated signal without exceeding the general performance criteria stated in the present document due to the presence of an unwanted input signal in the adjacent channels. Adjacent channel selectivity is specified in the present document in clauses 4.1.2.8, 4.2.2.8 and 4.3.2.8

C.4 Receiver spurious response rejection

The spurious response rejection is a measure of the capability of the receiver to receive a wanted signal without exceeding a given degradation due to the presence of an unwanted signal at any frequency at which a response is obtained. The frequencies of the adjacent signals (channels) are excluded.

Receiver spurious response rejection is specified in the present document in clauses 4.1.2.10 and 4.3.2.10.

C.5 Receiver blocking

Blocking is a measure of the receiver capability to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted input signal at any frequencies other than those of the spurious responses or the adjacent channels or bands. Receiver Blocking is specified in the present document in clauses 4.1.2.9, 4.2.2.9 and 4.3.2.9.

C.6 Receiver radio-frequency intermodulation

Intermodulation rejection is a measure of the ability of a receiver to operate in the presence of two or more unwanted signals the frequencies of which have a specific frequency relationship to the wanted signal. Receiver Intermodulation is specified in the present document in clauses 4.1.2.11 and 4.3.2.11.

C.7 Receiver dynamic range

Receiver dynamic range is defined as the range of the wanted input signal level over which a receiver functions at a specified performance level. The lower end of this range is normally the sensitivity of the receiver. The upper end of a receiver's dynamic range determines how strong a received signal can be before producing degradation due to overloading.

The UEs are normally deployed far away from BS and for a few UEs which are close to BS, sufficient coupling loss is also guaranteed due to the antenna high difference between BS and UE. Such that UE will not receive a wanted signal that is high enough to provide overloading effect. Thus, receiver dynamic range is not included in the present document.

C.8 Receiver unwanted emissions in the spurious domain

As a default, the limit for unwanted emissions in the spurious domain referenced at the antenna port should respect those in ERC/REC 74-01 [i.9]. Receiver spurious emission is specified in the present document in clauses 4.1.2.12, 4.2.2.10 and 4.3.2.12.

Annex D (informative): Recommended maximum uncertainty values

The measurements described in the present document are based on the following assumptions:

- the measured value related to the corresponding limit is used to decide whether an equipment meets the requirements of the present document;
- the value of the measurement uncertainty for the measurement of each parameter is included in the test report.

For the test methods, the recommended values of the maximum measurement uncertainty are calculated and correspond to an expansion factor (coverage factor) k = 1,96 (which provide a confidence level of 95 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)). Principles for the calculation of measurement uncertainty are contained in ETSI TR 100 028 [i.5], in particular in annex D of ETSI TR 100 028-2 [i.5].

The maximum measurement uncertainty values could be found in Annex F in ETSI 138 521-1 [1], Annex F in ETSI TS 138 521-2 [2], and Annex F in ETSI 138 521-3 [3].

Annex E (informative): Bibliography

- <u>Directive 2004/108/EC of the European Parliament and of the Council of 15 December 2004</u> on the approximation of the laws of the Member States relating to electromagnetic compatibility and repealing Directive 89/336/EEC (EMC Directive).
- <u>Directive 2006/95/EC of the European Parliament and of the Council of 12 December 2006</u> on the harmonisation of the laws of Member States relating to electrical equipment designed for use within certain voltage limits (LV Directive).
- <u>Commission Decision 2008/477/EC of 13 June 2008</u> on the harmonisation of the 2 500-2 690 MHz frequency band for terrestrial systems capable of providing electronic communications services in the Community.
- <u>Commission Decision (EU) 2015/750 of 8 May 2015</u> on the harmonisation of the 1 452-1 492 MHz frequency band for terrestrial systems capable of providing electronic communications services in the Union.
- <u>Directive 98/34/EC of the European Parliament and of the Council of 22 June 1998</u> laying down a procedure for the provision of information in the field of technical standards and regulations.
- <u>Directive 98/48/EC of the European Parliament and of the Council of 20 July 1998</u> amending Directive 98/34/EC laying down a procedure for the provision of information in the field of technical standards and regulations.
- <u>Commission Decision 2005/513/EC of 11 July 2005</u> on the harmonised use of radio spectrum in the 5 GHz frequency band for the implementation of wireless access systems including radio local area networks (WAS/RLANs).
- <u>Commission Decision 2007/90/EC of 12 February 2007</u> amending Decision 2005/513/EC on the harmonised use of radio spectrum in the 5 GHz frequency band for the implementation of Wireless Access Systems including Radio Local Area Networks (WAS/RLANs).
- <u>Commission Implementing Decision 2012/688/EU</u> on the harmonisation of the frequency bands 1920-1980 MHz and 2110-2170 MHz for terrestrial systems capable of providing electronic communications services in the Union - <u>Press Release</u>.

History

Document history								
V15.0.0	July 2024	SRdAP Process	EV 20241017: 2024-07-19 to 2024-10-17					